

The 1st International Electronic Conference on Medicinal Chemistry and Pharmaceutics

01-30 November 2025 | Online

Formulation of Lavender oil loaded Self-Microemulsifying Drug Delivery System for Psoriasis management. Rashmi Mallya¹ and Farooque Shaikh²

- 1 Department of Pharmacognosy, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra 400056, India.
- 2 Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra 400056, India.

INTRODUCTION & AIM

- Psoriasis is a chronic inflammatory skin disorder with rapid abnormal keratinocyte proliferation, leading to scaly skin plaques.
- Lavender oil, extracted from *Lavandula angustifolia*, has anti-inflammatory and antimicrobial properties potentially beneficial for managing psoriasis. However, poor solubility & permeability of lavender oil limits therapeutic potential.
- SMEDDS are oil-surfactant mixtures forming stable microemulsions for improved topical drug delivery
- Thus this project aimed develop and evaluate a self-microemulsifying drug delivery system (SMEDDS) for lavender oil, incorporating it into a topical cream formulation

Aims and objectives:

- To design and optimise the method for the preparation of self emulsifying drug delivery system
- To develop and evaluate lavender oil-loaded SMEDDS and incorporate the optimised formulation into a cream base for topical application.
- To assess In vitro efficacy of lavender oil loaded SMEDDS cream through in vitro studies.

METHOD

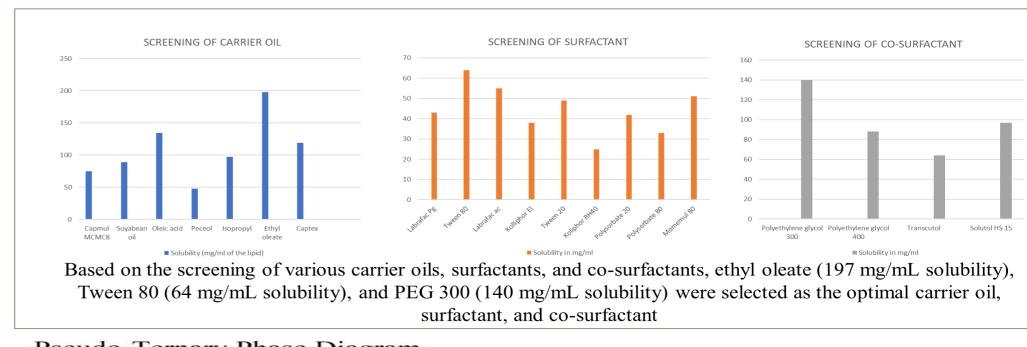
• Preformulation Studies

Lavender oil was assessed for appearance, color, solubility in various solvents, FT-IR spectra, and gas chromatography to confirm identity and purity.

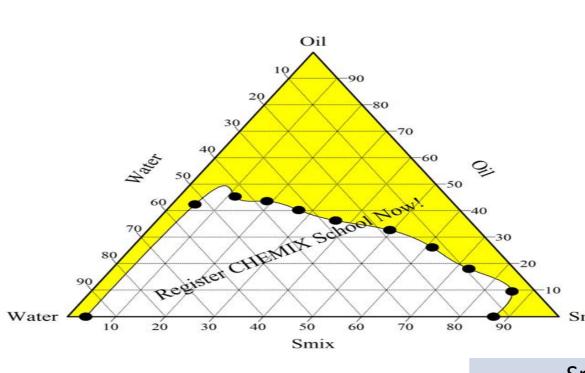
• SMEDDS Formulation & Optimization

- ➤ Solubility Studies: Lavender oil solubility in oils, surfactants, and cosurfactants determined via shaking flask method.
- ➤ Pseudo-Ternary Phase Diagrams: Constructed using water titration to identify microemulsion regions.
- Formulation Selection: Optimised formulation was selected based on clarity, stability, and emulsification efficiency.

Characterization of SMEDDS


- Visual inspection for transparency and phase separation.
- > pH & viscosity: Measured using pH meter and Brookfield viscometer.
- > % Transmittance: Assessed at 632 nm using UV spectroscopy
- ➤ Droplet Size & Zeta Potential: Measured using Malvern Zetasizer.
- > SMEDDS were incorporated into cream formulation and it was evaluated as per standard pharmaceutical procedures.

• In Vitro anti psoriasis Evaluation


➤ Gene Expression Analysis: Drug-treated HaCaT cells were analyzed for psoriasis-associated inflammatory markers via SYBR Green-based real-time PCR following RNA extraction and cDNA synthesis.

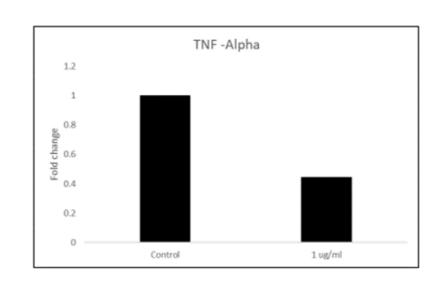
RESULTS & DISCUSSION

SCREENING OF SURFACTANT, CO-SURFACTANT AND CARRIER OIL

Pseudo-Ternary Phase Diagram

Based on the screening of surfactants, co-surfactants, and carrier oils, pseudoternary phase diagrams were constructed, which identified the regions where stable microemulsion formulations

Optimization of SMEDDS formulation with Lavender oil:


From the pseudo-ternary phase diagram, formulation batch with oil and Smix in the ratio of 1:37 was established, as an optimized batch.

The drug content of the optimized batch was 92%

Sr	Parameter	Result
1	Viscosity	280ср
2	рН	7.4
3	Transmittance	92.57
4	Zeta potential	-26.1 mV
5	Droplet size	147.3 d.nm
6	Centrifugation test	PASS
7	Freeze taw	PASS
8	Heat cooling test	PASS

Cream formulation: optimized SMEDDS batch, was incorporated stearic acid cream bases and the batch containing 10% stearic acid exhibited desirable drug release of 94.89% over 24 hours in comparison to conventional formulation (33.78%) and also passed all the pharmaceutical evaluation parameters of cream.

RT-PCR: When compared with control, proinflammatory marker, TNF- α expression was significantly reduced around 56% in lavender oil SMEDDS loaded cream.

CONCLUSION

This study successfully formulated and optimized a self-microemulsifying drug delivery system (SMEDDS) for lavender oil to enhance its solubility, stability, and suitability for topical application. Incorporation into a cream base demonstrated favorable physical properties, supporting the potential of lavender oil-loaded SMEDDS as a promising approach for managing psoriasis through topical delivery.

FUTURE WORK / REFERENCES

- Jaiswal P, Aggarwal G, Harikumar SL, Singh K. Development of self-microemulsifying drug delivery system and solid-self-
- microemulsifying drug delivery system of telmisartan. Int J Pharm Investig. 2014 Oct;4(4):195-206
 Charman SA, Charman WN, Rogge MC, Wilson TD, Dutko FJ, Pouton CW. Self-emulsifying drug delivery systems: Formulation and biopharmaceutic evaluation of an investigational lipophilic compound. *Pharm Res.* 1992;9:87–93.
- Chintalapudi R, Murthy TE, Lakshmi KR, Manohar GG. Formulation, optimization, and evaluation of self-emulsifying drug delivery systems of nevirapine. Int J Pharm Investig. 2015 Oct-Dec;5(4):205-13.