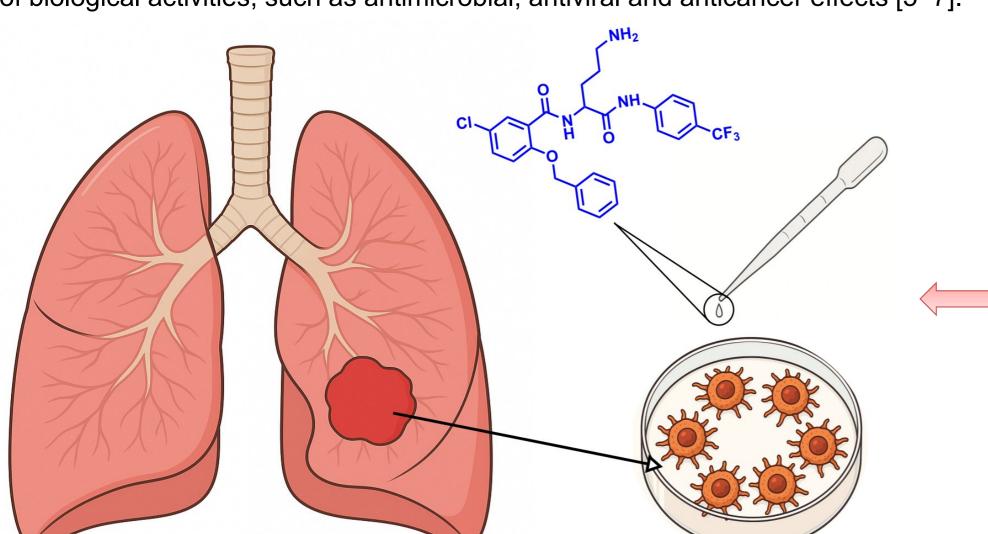
# The 1st International Electronic Conference on Medicinal Chemistry and Pharmaceutics



01-30 November 2025 | Online


## Ornithine Derivatives of Salicylamide with Cytotoxic Potential against A549 Human Lung Carcinoma Cells

Martin Šanda (1); Aleš Imramovský (1); Jiří Kos (2); Türkan Portakal (3); Petr Vaňhara (3); Josef Jampílek (4)

- (1) Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentska 95, 532 10, Pardubice, Czech Republic; martin.sanda2@student.upce.cz (M.Š.); ales.imramovsky@upce.cz (A.I.)
- (2) Department of Biochemistry, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; jirikos85@gmail.com (J.K.)
- (3) Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; turkan.portakal@med.muni.cz (T.P.); pvanhara@med.muni.cz (P.V.)
- (4) Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 779 00 Olomouc, Czech Republic; josef.jampilek@gmail.com (J.J.)

## **INTRODUCTION & AIM**

Peptidomimetics represent a promising group of biologically active compounds with broad therapeutic potential that mimic naturally occurring peptides while overcoming their limitations [1]. This study focuses on the synthesis and cytotoxic properties of short original ornithine-based peptidomimetics derived from substituted *O*-benzyl-protected salicylic acid (salicylamide), where L-ornithine is further modified with various aromatic amines, and on the evaluation of their biological activity against the A549 human lung carcinoma cell line. Salicylic acid-based peptidomimetics have previously been synthesized by our research group, demonstrating both anticancer and antimicrobial activity [2–4]. Ornithine-containing peptidomimetics represent synthetic precursors leading to arginine-based peptidomimetics. Arginine peptidomimetics exhibit a wide range of biological activities, such as antimicrobial, antiviral and anticancer effects [5–7].



## **RESULTS & DISCUSSION**

From a synthetic perspective, the peptidomimetic scaffold was synthesized *via* Steglich amidation, and the side chain was modified. A series of novel intermediates and final ornithine-derived peptidomimetic were synthesized following a four-step synthetic route (**Scheme 1**), each of which was repeatedly verified.

**Scheme 1.** Synthetic route to ornithine-based peptidomimetics

a) EDCI.HCI, HOBt, DCM, RT, 1,5h; b) LiOH,  $H_2O:1,4$ -dioxan (1:3), 50 °C, 1h; c) EDCI.HCI, HOBt, TEA, DCM, RT, 16h; d) TFA (80 ekv.), DCM, RT, 2,5h

The synthesis commenced from *O*-benzyl-protected 5-chlorosalicylic acid (1). The corresponding methyl ester (2) was obtained *via* Steglich amidation, followed by basic hydrolysis to yield the carboxylic acid intermediate (3). Subsequent Steglich amidation with 4-(trifluoromethyl)aniline provided intermediate (4), and final Boc deprotection afforded the target ornithine-based peptidomimetic (5).

From the perspective of biological activity, the A549 cell line is a standard *in vitro* model for testing novel candidate anticancer agents against non-small cell lung carcinoma (NSCLC), the most prevalent clinical form of lung cancer. As a control, newly established expandable lung epithelial (ELEP) cells derived form human embryonic stem cells were used as the non-cancer control [8]. While the A549 cell line is derived from lung adenocarcinoma, the ELEP represent a population of immature alveolar type II epithelia.

| Figure 1. Illustrative representation     |  |  |  |  |
|-------------------------------------------|--|--|--|--|
| of the biological activity testing of the |  |  |  |  |
| presented ornithine peptidomimetic        |  |  |  |  |
| on the A549 cancer cell line.             |  |  |  |  |

**Table 1.** Anticancer activity of ornithine-based peptidomimetics and their derivatives

| Code | Molecules     | IC50 [μM] |      |
|------|---------------|-----------|------|
|      |               | A549      | ELEP |
| (1)  |               | >38.1     | ı    |
| (2)  | cı NH Co      | 1.5       | I    |
| (3)  | CI NH OH      | >21       | -    |
| (4)  | CI NH CF3     | >1.6      | ı    |
| (5)  | CI NH2 NH CF3 | 1.0       | 1.6  |

## **METHOD**

All compounds were fully characterized by means of <sup>1</sup>H NMR, <sup>13</sup>C NMR, <sup>19</sup>F NMR, HRMS, and elemental analysis. The proposed synthetic route was consistently validated, and the compounds were obtained in a quality suitable for biological testing. A549 cells were cultured in high glucose (4.5 g/L) Dulbecco's Modified Eagle Medium (DMEM) enriched with 10% fetal calf serum (FCS), 50 U/mL penicillin G, and 50 mg/mL streptomycin sulfate at 37°C in a humidified atmosphere with 5% CO<sub>2</sub>. Cell viability was measured using MTT assay as described elsewhere [9].

### CONCLUSION

In this study, short ornithine-derived derivatives with potential biological activity against the A549 cell line were prepared. The anticancer activity of the synthesized compounds was determined *in vitro* against the A549 cell line, and the activity was confirmed for compounds (2), (4) and (5). However, compound (5) exhibits high toxicity against ELEP cells, which are commonly used as a standard model of healthy cells. For these reasons, compound (2) appears to be more promising for further study.

#### REFERENCES

- [1] Lee, Y. S. Biomolecules 2022, 12 (9), 1241.
- [2] Jorda, R.; Imramovský, A.; *et al. Eur. J. Med. Chem.* **2017**, 135, 142–158.
- [3] Jorda, R.; Imramovský, A.; et al. Eur. J. Med. Chem. **2020**, 188, 112036.
- [4] Jorda, R.; Imramovský, A.; et al. Bioorg. Chem. 2021, 115, 105228.
- [5] Baldassarre, L.; *et al. J. Pept. Sci.* **2012**, 18 (9), 567–578.
- [6] Nitsche, C.; et al. J. Med. Chem. 2017, 60 (1), 511–516.
- [7] Colombo, R.; et al. J. Med. Chem. **2012**, 55 (23), 10460–10474.
- [8] Kotasová, H.; Vaňhara, P.; et al. Tissue Eng. Regen. Med. 2022, 19(5):1033-1050.
- [9] Moráň, L.; Vaňhara, P.; *et al. Metallomics* **2019**, 11(9):1481-1489.