

The 1st International Electronic Conference on Medicinal Chemistry and Pharmaceutics

01-30 November 2025 | Online

Identification of Novel Benzimidazole-Based NS5B Polymerase Inhibitors of Hepatitis C Virus Using Molecular Docking, Atom-Based 3D-QSAR Model, and ADMET Prediction

Abderahmane Belafriekh¹, Aicha Laoud²

¹Laboratory of LCPMM, Chemistry Department, Faculty of Sciences, University of Blida 1, P.O.Box 270 Blida, 09000, Algeria.

²Department of chemical engineering, Faculty of Chemical Engineering, University of Salah Boubnider Constantine 3, Constantine 25000, Algeria.

INTRODUCTION & AIM

The Hepatitis C Virus (HCV) remains a worldwide health emergency, infecting tens of millions and inducing severe hepatic complications (cirrhosis, hepatocellular carcinoma) [1]. Although the arrival of direct-acting antivirals (DAAs) has revolutionized the treatment, the challenges of viral resistance generation and the need for less expensive therapies, particularly in low-income countries, justify the continued quest for new drugs [2].

The NS5B RNA polymerase is the key HCV replication enzyme and remains the foremost and approved target for inhibitor design, i.e., Sofosbuvir [3].

In this context, our study utilized a virtual screening and rational design approach, involving the utilization of molecular docking, a robust 3D-QSAR model, and ADMET prediction to:

Establish the molecular descriptors that determine the binding of benzimidazole derivatives with the active site of NS5B.

Develop and characterize new benzimidazole derivatives as new potential NS5B inhibitors [4].

Fig.1: Benzimidazole compound 29. (IC50=0.012μM).

METHOD

- ❖ A dataset of 53 benzimidazole derivatives reported as NS5B polymerase inhibitors was collected from the literature. The structure was prepared using the LigPrep.
- ❖ The crystal structure of HCV NS5B RNA polymerase (PDB ID:2DXS) was downloaded from the Protein Data Bank (PDB).
- Prepared ligands were docked into the active site using the Glide module in extra precision (XP) docking for the top-ranked compounds.
- Atom-based 3D-QSAR model was performed using PHASE (Schrödinger). Model performance was evaluated by internal and external validation.
- Predicted pharmacokinetic and drug-likeness properties were evaluated using QikProp (Schrödinger).

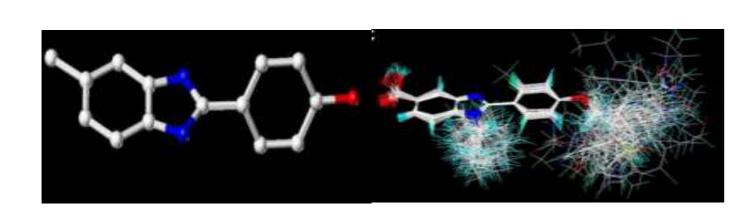


Fig.2:Template used for molecular alignment, Structural alignment of the dataset

RESULTS & DISCUSSION

1-3D QSAR Analysis

Table 1: PLS statistic of the atom-based 3D-QSAR model.

Factors	SD	\mathbb{R}^2	\mathbf{F}	P	RMSE	\mathbb{Q}^2	Pearson-r
1	0.32	0.88	110.5	1.46e-14	0.64	0.58	0.48
2	0.22	0.93	203.7	2.9e-20	0.62	0.62	0.92
3	0.18	0.95	941.2	4.09e-29	0.57	0.79	0.92

Fig.3: Correlation between actual and predicted activity pIC50 of training and test set.

2- Molecular Docking

Table 2: Docking results of two compounds with the predicted activity (pIC₅₀).

Compounds	XPScore	Glide Emodel	pIC ₅₀
N1	-9.51	-65.82	8.64
N2	-9.06	-56.51	7.42
Compound 29	-8.92	-70.15	7.22
	/VA		

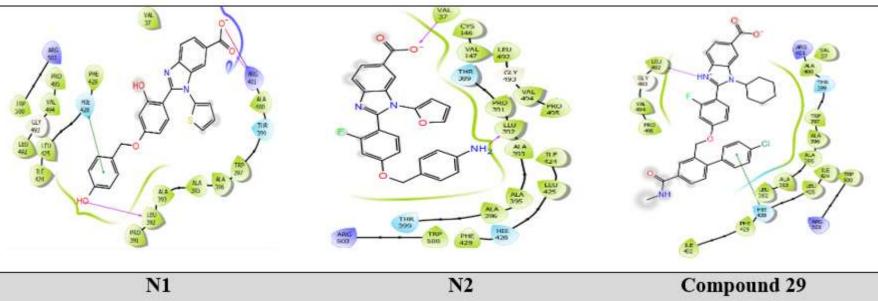


Fig. 4: Molecular docking and interaction analysis of NS5B polymerase inhibitors

Compound 29 and proposed molecules N1–N2.

CONCLUSION

- ☐ This study successfully used computational modeling (docking, 3D-QSAR, ADMET) to rationally design novel benzimidazole derivatives targeting HCV NS5B.
- ☐ The 3D-QSAR models revealed key molecular features for strong binding.
- ☐ We identified promising new inhibitors with optimal binding affinities and favorable ADMET profiles.
- ☐ These molecules are excellent drug candidates for the next generation of affordable NS5B inhibitors and require urgent experimental validation.

FUTURE WORK / REFERENCES

- [1] Gish, R. G. W. The Global Burden of Hepatitis C Virus Infection: A Public Health Perspective. *J. Hepatol.* **2015**, *63*(1), 3–10.
- [2] El-Sayed, A. M.; et al. Advances in the Development of NS5B Polymerase Inhibitors for the Treatment of Hepatitis C Virus Infection. *Eur. J. Med. Chem.* **2018**, *143*, 1699–1721.
- [3] Gane, E. J. Sofosbuvir, a NS5B Polymerase Inhibitor in the Treatment of Hepatitis C: A Review of Its
- Clinical Potential. Hepatic Med. Evid. Res. **2014**, 6, 21–30.
- [4] Dhar, T. K.; Saha, A.; Jha, S. S.; Bandyopadhyay, S. 3D QSAR and Molecular Docking Studies of Benzimidazole Derivatives as Hepatitis C Virus NS5B Polymerase Inhibitors. *J. Chem. Inf. Model.* **2008**, *48*(12), 2307–2316.