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Parkinson’s disease (PD) is a progressive neurodegenerative disorder
characterized by the loss of dopaminergic neurons, leading to motor and
non-motor dysfunctions.[1] Current treatments primarily enhance
dopamine levels using levodopa and enzyme inhibitors.[2] Although
initially effective, long-term levodopa use often causes severe side
effects that exacerbate PD symptoms.[2] Melanostatin (MIF-1, Figure 1),
an endogenous tripeptide and positive allosteric modulator (PAM) of
dopamine D, receptors (D,R), has emerged as a promising alternative
therapy.[3] However, its poor pharmacokinetic profile, including low
gastrointestinal absorption, limits clinical application.[3,4] Structural
optimization efforts, such as substituting L-proline with L-pipecolic acid,
have improved bioactivity (compound I, Figure 1).[5] Here, we report the
synthesis and biological evaluation of bridged MIF-1 derivatives
incorporating a fused L-proline/L-pipecolic acid scaffold, (1R,3S,4S)-2-
azanorbornane-3-carboxylic acid, compound (1R,3S,4S5)-1 (Figure 1).
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Figure 1. Rational design of bridged MIF-1 derivatives using (1R,38,4S)-1.

METHOD

The synthesis began with the peptide coupling of (1R,3S,4S)-1 with
methyl L-valylglycinate (a), methyl L-leucylglycinate (b), L-valyl-L-alaninate
(c), or methyl L-leucyl-L-alaninate (d) using TBTU as the coupling
reagent, affording tripeptides 2(a-d) in excellent yields (91.8-99.8%,
Scheme 1). Ammonolysis of methyl esters 2(a-d) produced primary
carboxamides 3(a-d) in 92.3-98.3% vyield. The structure of 3d was
confirmed by single-crystal X-ray diffraction (Scheme 1). Subsequent
acidolytic removal of the N-Boc group from 2(a-d) and 3(a-d) with
trifluoroacetic acid (TFA) afforded 4(a-d) and 5(a-d), respectively, in 88.2-
98.4% vyield. Pharmacological evaluation was conducted on human D,R
expressed in CHO cells using a cAMP assay with homogeneous time-
resolved fluorescence in the presence of dopamine.[3,4] Dopamine alone
displayed an EC., of 0.53 uM (Table 1). Four bridged MIF-1 derivatives
enhanced dopamine potency by 5.3-6.6-fold at 0.01 nM, demonstrating
strong PAM activity (Table 1). Cytotoxicity of 2c, 3d, 4b, and 4d was
assessed in differentiated SH-SY3Y neuroblastoma cells at 100 and 200
UM using the MTT reduction assay, with 6-hydroxydopamine (6-OHDA)
as a positive control.[3] Compound 4b was cytotoxic at both
concentrations, while 2c showed toxicity only at 200 uM; MIF-1 and the
other derivatives were non-cytotoxic (Figure 2). P-glycoprotein (P-gp)
inhibition, evaluated via the calcein-AM assay,[6] revealed no
interference with P-gp-mediated transport, indicating lack of interaction
with the efflux transporter (Table 2). Permeability studies in Caco-2
monolayers[7] showed all compounds exhibited lower efflux ratios
(BA/AB) than MIF-1, suggesting enhanced permeability relative to the
parent neuropeptide (Table 2).
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Scheme 1. Synthesis of bridged MIF-1 derivatives 2-5(a-d). Reagents and conditions: i) Et;N,
TBTU, dipeptides a-d, anhydrous CH,CI,; (ii) 7 M ammonia in MeOH; iii) TFA, anhydrous CH,CI..
The ORTEP diagram of 3d is shown at 50% probability level.

Table 1. Pharmacological evaluation of bridged MIF-1 and compounds 2c¢, 3d, 4b, and 4d by
functional assays at 0.01 nM.

0.01 nM
Compound
EC., of DA (uM) | E,.. of DA (%)
DA 0.53 100
DA + 2c 0.09 97
DA + 3d 0.09 98
DA + 4b 0.08 89
DA + 4d 0.10 92
DA + MIF-1 0.17 94
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Table 2. EC;, values in the calcein-AM assay and Caco-2 cell monolayer permeability.

Compound | EC5, P-gp (100 pM) | P,,,BA (nm/s) | P,, AB (nm/s) BA/AB
MIF-1 45% 2367 788 3.00
2c 39% 2352 959 2.45
3d 12% 1977 737 2.68
4b 2% 2331 796 2.92
4d 15% 2367 865 2.73

CONCLUSION

The replacement of L-proline with a (1R,3S,4S)-1 proved to be a feasible
strategy with the discovery of bridged MIF-1 derivatives with potent PAM
activity at the D,R, enhancing dopamine potency up to 6.6-fold at 0.01 nM.
Most compounds showed minimal cytotoxicity and limited P-gp interaction,
with Caco-2 assays indicating improved permeability compared with MIF-
1. These findings highlight bridged MIF-1 analogues as promising leads
for developing next-generation anti-Parkinson’s agents with enhanced
pharmacological efficacy and favorable pharmacokinetic profiles.
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