

The 1st International Electronic Conference on Medicinal Chemistry and Pharmaceutics

01-30 November 2025 | Online

Design-Oriented Synthesis and Biological Evaluation of Melanostatin Neuropeptide Derivatives with Improved Pharmacokinetic Profiles

Ivo E. Sampaio-Dias^{1,*}, Hugo F. Costa-Almeida¹, Xavier C. Correia¹, Beatriz L. Pires-Lima¹, Ana Reis-Mendes², Vera M. Costa^{2,3}, Xerardo García-Mera⁴, and José E. Rodríguez-Borges¹

¹LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; *e-mail: ivdias@fc.up.pt

²UCIBIO – Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal

³Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal

⁴Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain

INTRODUCTION & AIM

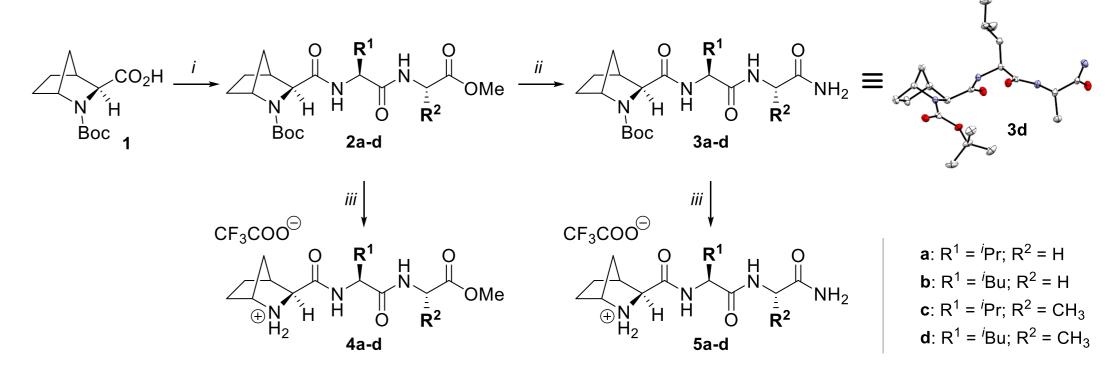
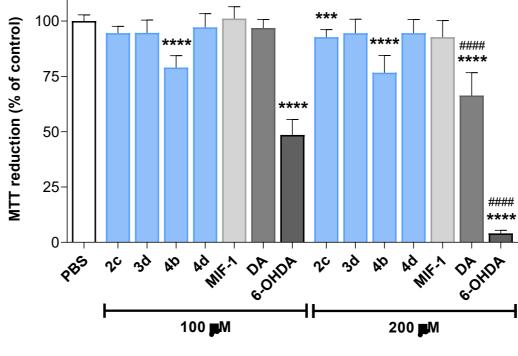

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons, leading to motor and non-motor dysfunctions.[1] Current treatments primarily enhance dopamine levels using levodopa and enzyme inhibitors.[2] Although initially effective, long-term levodopa use often causes severe side effects that exacerbate PD symptoms.[2] Melanostatin (MIF-1, Figure 1), an endogenous tripeptide and positive allosteric modulator (PAM) of dopamine D_2 receptors (D_2R), has emerged as a promising alternative therapy.[3] However, its poor pharmacokinetic profile, including low gastrointestinal absorption, limits clinical application.[3,4] Structural optimization efforts, such as substituting L-proline with L-pipecolic acid, have improved bioactivity (compound I, Figure 1).[5] Here, we report the synthesis and biological evaluation of bridged MIF-1 derivatives incorporating a fused L-proline/L-pipecolic acid scaffold, (1R,3S,4S)-2-azanorbornane-3-carboxylic acid, compound (1R,3S,4S)-1 (Figure 1).

Figure 1. Rational design of bridged MIF-1 derivatives using (1*R*,3*S*,4*S*)-1.

METHOD

The synthesis began with the peptide coupling of (1R,3S,4S)-1 with methyl L-valylglycinate (a), methyl L-leucylglycinate (b), L-valyl-L-alaninate (c), or methyl L-leucyl-L-alaninate (d) using TBTU as the coupling reagent, affording tripeptides 2(a-d) in excellent yields (91.8-99.8%, Scheme 1). Ammonolysis of methyl esters 2(a-d) produced primary carboxamides 3(a-d) in 92.3-98.3% yield. The structure of 3d was confirmed by single-crystal X-ray diffraction (Scheme 1). Subsequent acidolytic removal of the N-Boc group from 2(a-d) and 3(a-d) with trifluoroacetic acid (TFA) afforded 4(a-d) and 5(a-d), respectively, in 88.2-98.4% yield. Pharmacological evaluation was conducted on human D₂R expressed in CHO cells using a cAMP assay with homogeneous timeresolved fluorescence in the presence of dopamine.[3,4] Dopamine alone displayed an EC₅₀ of 0.53 µM (Table 1). Four bridged MIF-1 derivatives enhanced dopamine potency by 5.3-6.6-fold at 0.01 nM, demonstrating strong PAM activity (Table 1). Cytotoxicity of 2c, 3d, 4b, and 4d was assessed in differentiated SH-SY5Y neuroblastoma cells at 100 and 200 µM using the MTT reduction assay, with 6-hydroxydopamine (6-OHDA) a positive control.[3] Compound 4b was cytotoxic at both concentrations, while 2c showed toxicity only at 200 µM; MIF-1 and the other derivatives were non-cytotoxic (Figure 2). P-glycoprotein (P-gp) inhibition, evaluated via the calcein-AM assay,[6] revealed no interference with P-gp-mediated transport, indicating lack of interaction with the efflux transporter (Table 2). Permeability studies in Caco-2 monolayers[7] showed all compounds exhibited lower efflux ratios (BA/AB) than MIF-1, suggesting enhanced permeability relative to the parent neuropeptide (Table 2).


RESULTS & DISCUSSION

Scheme 1. Synthesis of bridged MIF-1 derivatives **2-5(a-d)**. Reagents and conditions: i) Et₃N, TBTU, dipeptides **a-d**, anhydrous CH₂Cl₂; (ii) 7 M ammonia in MeOH; iii) TFA, anhydrous CH₂Cl₂. The ORTEP diagram of **3d** is shown at 50% probability level.

Table 1. Pharmacological evaluation of bridged MIF-1 and compounds **2c**, **3d**, **4b**, and **4d** by functional assays at 0.01 nM.

Compound	0.01 nM		
Compound	EC ₅₀ of DA (μM)	E _{max} of DA (%)	
DA	0.53	100	
DA + 2c	0.09	97	
DA + 3d	0.09	98	
DA + 4b	0.08	89	
DA + 4d	0.10	92	
DA + MIF-1	0.17	94	

Figure 2. Neurotoxicity was evaluated by the MTT reduction assay in differentiated SH-SY5Y neuronal cells incubated for 48 h at 100 or 200 μ M of test compounds. Data are expressed as a % of control (mean ± standard deviation, 12 wells, 3 independent experiments). Statistical analyses were performed using ANOVA test, followed by the Tukey *post hoc* test (***p < 0.001, ****p < 0.0001 vs. control; ###p < 0.0001 vs. the lowest concentration of the same drug).

Table 2. EC_{50} values in the calcein-AM assay and Caco-2 cell monolayer permeability.


Compound	EC ₅₀ P-gp (100 μM)	P _{app} BA (nm/s)	P _{app} AB (nm/s)	BA/AB
MIF-1	45%	2367	788	3.00
2c	39%	2352	959	2.45
3d	12%	1977	737	2.68
4b	2%	2331	796	2.92
4d	15%	2367	865	2.73

CONCLUSION

The replacement of L-proline with a (1R,3S,4S)-1 proved to be a feasible strategy with the discovery of bridged MIF-1 derivatives with potent PAM activity at the D_2R , enhancing dopamine potency up to 6.6-fold at 0.01 nM. Most compounds showed minimal cytotoxicity and limited P-gp interaction, with Caco-2 assays indicating improved permeability compared with MIF-1. These findings highlight bridged MIF-1 analogues as promising leads for developing next-generation anti-Parkinson's agents with enhanced pharmacological efficacy and favorable pharmacokinetic profiles.

REFERENCES

[1] Lang, A. E. and Lozano, A. M. N. Engl. J. Med. 1998, 339 (15), 1044-1053; [2] Tambasco, N., et al. Curr. Neuropharmacol. 2018, 16 (8), 1239-1252; [3] Sampaio-Dias, I. E., et al. J. Med. Chem. 2021, 64, 6209-6220; [4] Sampaio-Dias, I. E., et al. ACS Chem. Neurosci. 2019, 10 (8), 3690-3702; [5] Johnson, R. L.; et al. J. Med. Chem. 1986, 29 (10), 2104-2107; [6] Contino, M., et al. Eur. J. Med. Chem. 2020, 208, 112843; [7] Miciaccia, M., et al. Pharmaceuticals 2024, 17, 135.

