

The 1st International Electronic Conference on Medicinal Chemistry and Pharmaceutics

01-30 November 2025 | Online

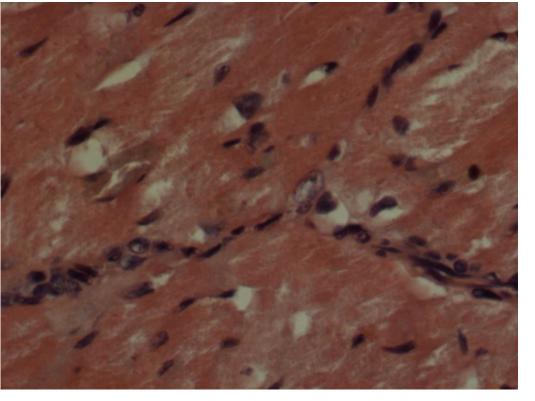
Effects of Copaiba Oil on Myocardial Morphology in Streptozotocin-Induced Diabetic Rats

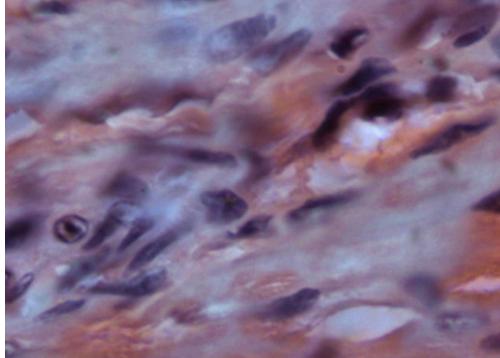
Gregório Tolovi¹, Carol Cristine Inácio¹, Guilherme Augusto Arenso Barbosa¹, Arissa Kubota¹, Álvaro Antonio Felipe Soares¹, Maria Raquel Marçal Natali¹, Célia Regina de Godoy Gomes¹

¹Department of Morphological Sciences, Universidade Estadual de Maringá (UEM)

INTRODUCTION

cardiovascular **Diabetes** mellitus associated with complications, including structural and functional alterations of the myocardium. Copaiba oil (Copaifera spp.) has been traditionally used for its anti-inflammatory, antioxidant, and wound-healing properties. This study aimed to evaluate the potential cardioprotective effects of copaiba essential oil (OEC) on the myocardial morphology of diabetic rats.


Stereological data of cardiomyocytes, collagen, and myocardial vessels from the hearts of the control group (CT), OEC200 group (C200), diabetic with OEC100 (D100), diabetic with OEC200 (D200), and diabetic control (DC)


Groups	Vv %	Vv % collagen	Vv % myocardial
	cardiomyocytes		vessels
CT	$76,67 \pm 8,2$	$21,58 \pm 6,0$	2,3 ± 6,4
C200	$74,75 \pm 4,3$	$19,98 \pm 4,7$	$5,1 \pm 3,5$
D100	77,09 ± 2,9	$19,87 \pm 4,3$	$3,0 \pm 2,3$
D200	76,82 ± 4,5	$17,90 \pm 3,2$	$5,2 \pm 3,5$
DC	74,20 ± 5,7	$21,84 \pm 5,2$	$4,0 \pm 3,1$
p =	0,4881	0,5957	0,2801

Data wasn't considered relevant using the Anova software

METHOD

Male Wistar rats (70 days old, n=40) were divided into five groups (n=8 each): control (CT), control treated with OEC 200 mg/kg (C200), diabetic control (DC), diabetic treated with OEC 100 mg/kg (D100), and diabetic treated with OEC 200 mg/kg (D200). Diabetes was induced by intravenous streptozotocin (65 mg/kg). OEC was administered daily by gavage for 18 days. After euthanasia, the hearts were collected, weighed, and processed for histological and stereological analyses. Parameters included cardiosomatic index and volume densities (Vv) of cardiomyocytes, collagen, and blood vessels. Statistical analysis was performed using ANOVA with Tukey's post-test (p<0.05).

Inflammatory cells in-between heart muscle cells

RESULTS & DISCUSSION

Diabetic animals showed significantly reduced body and heart weights compared to controls (p<0.001). However, no significant differences were observed among groups in cardiosomatic index or stereological parameters of cardiomyocytes, collagen, and vessels. Interestingly, OEC administration in diabetic rats was associated with worsened hyperglycemia, with final blood glucose levels exceeding those of untreated diabetic controls. No morphological evidence of cardioprotection or reduction of inflammatory infiltrates was detected.

CONCLUSION

Copaiba oil did not promote cardioprotective effects in this model of type 1 diabetes. On the contrary, it aggravated hyperglycemia in diabetic rats, while producing only mild hypoglycemic effects in controls. These findings highlight the need for caution regarding indiscriminate use of copaiba oil in diabetic patients and underscore the importance of further studies addressing dosage, administration, and chemical composition standardization to better clarify its cardiovascular effects.

FUTURE WORK / REFERENCES

- Extend treatment period (> 8 weeks) and evaluate biochemical oxidative markers (MDA, SOD, CAT).
- Test higher doses (≥ 250 mg/kg) for pharmacological efficacy.
- Explore ultrastructural and molecular pathways of myocardial remodeling.

CAMPOS, C. et al. Efeitos do Óleo de Copaíba em Marcadores Periféricos de Estresse Oxidativo em um Modelo de Cor Pulmonale em Ratos. Arquivos Brasileiros de Cardiologia, v. 117, p. 1106-1112, 2021.

CAMPOS-CARRARO, C. et al. Copaiba Oil Attenuates Right Ventricular Remodeling by Decreasing Myocardial Apoptotic Signaling in Monocrotaline Induced Rats. Journal of **Cardiovascular Pharmacology, v. 72, n. 5, p. 214-221, 2018.** DIAS, D. S. et al. Copaiba oil suppresses inflammatory cytokines in splenocytes of C57Bl/6 mice induced with experimental autoimmune encephalomyelitis (EAE). Molecules, v. 19,

n. 8, p. 12814-12826, 2014. LOPES, A. B. R. Efeito do óleo de copaíba na atividade de enzimas antioxidantes hepáticas em modelo experimental de diabetes tipo 1. São Paulo: UNIFESP, 2021.

RAGA, D. D. et al. Hypoglycemic effects of tea extracts and ent-kaurenoic acid from Smallanthus sonchifolius. Natural Product Research, v. 24, n. 18, p. 1771-1782, 2010