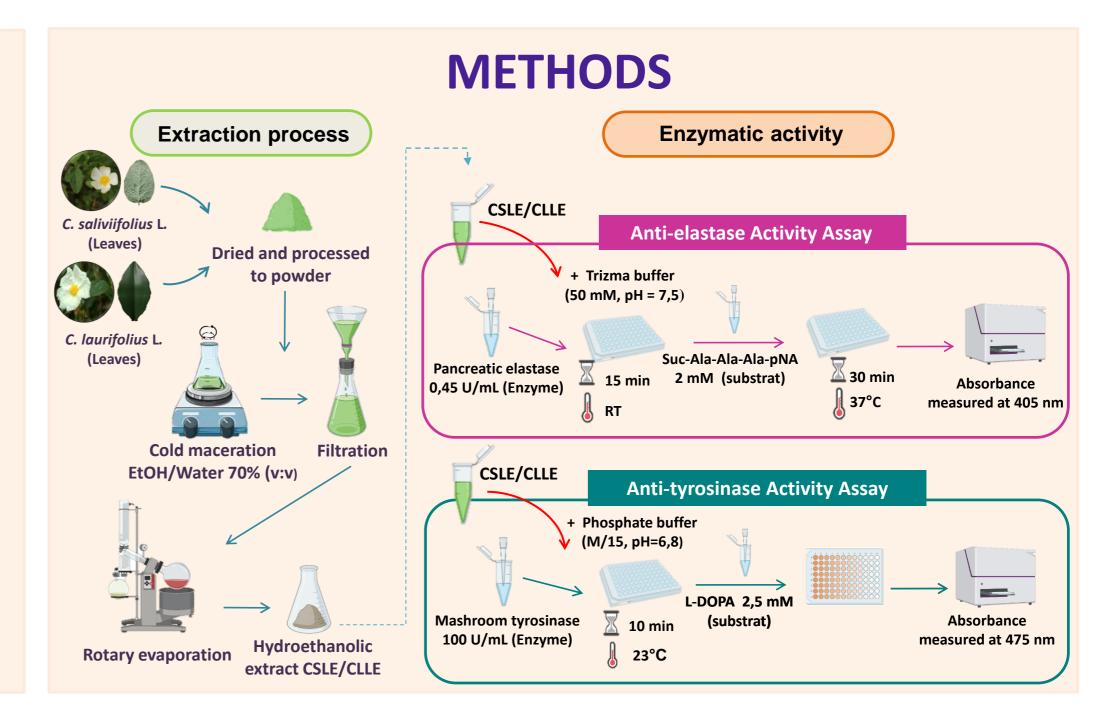
The 1st International Electronic Conference on Medicinal Chemistry and Pharmaceutics

01-30 November 2025 | Online

Anti-Elastase and Anti-Tyrosinase Activities of *Cistus salviifolius* and *Cistus laurifolius* Leaf Extracts: Potential Natural Agents for Skin Regeneration and Depigmentation

Maryem Bouabidi 1, Maroua Ait Tastift 2, Chemseddoha Gadhi 2, Hafida Bouamama 1


- Laboratory of Sustainable Development and Health Research (LRDDS), Faculty of Sciences and Technology, Cadi Ayyad University, 549 Bd Abdelkrim Al Khattabi, Marrakesh 40000, Morocco
- ² Laboratory of Agri-Food, Biotechnology and Valorization of Plant Bioresources, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd. Prince My Abdellah, B.P. 2390, Marrakesh 40000, Morocco

INTRODUCTION & AIM

Elastase and tyrosinase are two enzymes of particular relevance in the context of dermal disorders. The overactivity of elastase can lead to excessive degradation of elastin, resulting in reduced skin elasticity and premature aging [1]. Tyrosinase, on the other hand, plays a key role in melanin synthesis, and its dysregulation can contribute to pigmentation disorders [2].

Plant-derived ingredients are a major source of bioactive compounds in cosmetic and pharmaceutical formulations. These compounds exhibit antioxidant, antibacterial, astringent, regenerating and skin-lightening activities [3,4], which has stimulated considerable interest in their potential as natural anti-aging and depigmenting agents.

The present study aims to evaluate, *in vitro*, the inhibitory activities of hydroethanolic leaf extracts of *Cistus salviifolius* (CSLE) and *Cistus laurifolius* (CLLE) using spectrophotometric enzyme assays.

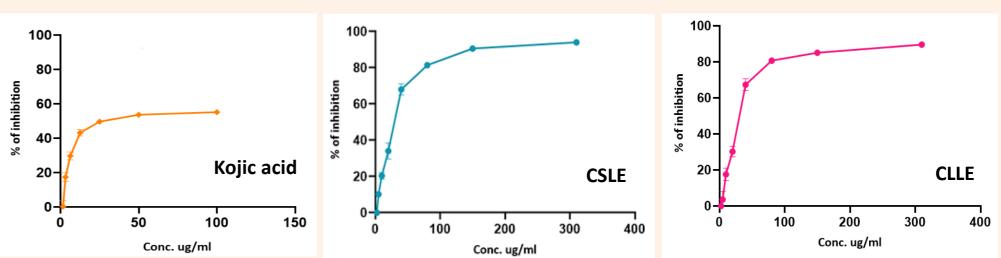
RESULTS & DISCUSSION

Table 1. Extraction yield of both extracts CSLE and CLLE.

Extract	Yield (%)	Organoleptic characteristics
CSLE	15.2 ± 1.0	Dark reddish-orange powder characterized by a distinct and intense aroma
CLLE	15.8 ± 0.8	Viscous consistency with a dark brown coloration

Figure 1. Visual appearance of CSLE (A) and CLLE (B).

Table 2. Half-Maximal Inhibitory Concentration (IC_{50}) of CSLE and CLLE extracts against elastase activity.


	CSLE	CLLE	Elastatinal
IC ₅₀ μg/mL	43,02 ± 1,54	$218,2 \pm 2,58$	0,5 ± 0,06

[•] Significant anti-elastase effect of both extracts CSLE and CLLE .

Table 3. Half-Maximal Inhibitory Concentration (IC_{50}) of CSLE and CLLE extracts against tyrosinase activity.

	CSLE	CLLE	Kojic acid
IC ₅₀ μg/mL	28,7 ± 1,80	30,2 ± 1,9	31,1± 1,6

Figure 2. Variation in tyrosinase inhibition percentage with increasing concentrations of CSLE, CLLE, and Kojic acid (Reference standard).

• The differences in IC_{50} values among kojic acid, CSLE, and CLLE are not statistically significant. However, kojic acid reached a maximum inhibition of approximately 50–60%, whereas CSLE and CLLE achieved higher inhibition levels, exceeding 80%.

CONCLUSION

- Both *Cistus salviifolius* leaf extract (CSLE) and *Cistus laurifolius* leaf extract (CLLE) demonstrated significant inhibitory effects against elastase and tyrosinase.
- CSLE exhibited significantly stronger elastase inhibition (IC₅₀= 43.0 μ g/mL) compared to CLLE (IC₅₀ = 218.2 μ g/mL).
- Both extracts proved to be more effective tyrosinase inhibitors than kojic acid.

These findings highlight the potential of **CSLE** and **CLLE** extracts as promising **natural sources** of **anti-aging** and **depigmenting agents**.

REFERENCES

[1]. Putri, R., R. Handayani, and B. Elya. 2019. "Anti-Elastase Activity of Rumput Teki (*Cyperus rotundus* L.) Rhizome Extract." *Pharmacognosy Journal* 11 (4): 754–758; [2]. Peng, G., G. Wang, Q. H. Zeng, et al. 2022. "A Systematic Review of Synthetic Tyrosinase Inhibitors and Their Structure—Activity Relationship." Critical Reviews in *Food Science and Nutrition* 62 (15): 4053–4094; [3]. Michalak, M. 2022. "Plant-Derived Antioxidants: Significance in Skin Health and the Ageing Process." *International Journal of Molecular Sciences* 23: 585; [4]. Menaa, F. 2014. "Skin Anti-Aging Benefits of Phytotherapeutics-Based Emulsions." *Pharmaceutical Analytical Acta* 5: 168.

ACKOWLEDGEMENT

We would like to thank the funding sources: The Forth Project on Valorization of Aromatic and Medicinal Plants (VPMA-4-2022/12) jointly funded by the Centre National de la Recherche Scientifique et Technique (CNRST) of the Kingdom of Morocco, Agence Nationale des Plantes Médicinales et Aromatiques (ANPMA) and Cadi Ayyad University.

