# The 1st International Electronic Conference on Medicinal Chemistry and Pharmaceutics



01-30 November 2025 | Online

# Meso-methyl-BODIPY conjugate with cabozantinib as a red-light-activated prodrug for anticancer therapy

E.M. Pnachina\*1, L.V. Krylova², N.S. Kuzmina², V.F. Otvagin², E.A. Fedotova², A.Yu. Fedorov², I.V. Balalaeva¹ 1 Department of Biophysics, Institute of Biology and Biomedicine, Lobachevsky University, Nizhny Novgorod 603022, Russia

> 2 Department of Organic Chemistry, Faculty of Chemistry, Lobachevsky University, Nizhny Novgorod 603022, Russia

### INTRODUCTION & AIM

Photoactivated chemotherapy is a new strategy for the development of anticancer drugs in which the activity of a chemotherapeutic drug is controlled by light irradiation. This avoids systemic toxicity and reduces side effects.. The aim of this work was to evaluate the therapeutic potential of the light-activated prodrug BODIPY-Cab.

#### **METHOD**

#### The tested compound

Cabozantinib suppresses metastasis, angiogenesis, and oncognesis by inhibiting receptor tyrosine kinases (AXL, VEGFR2, MET).

Meso-methyl-BODIPY plays a dual role acting as photosensitizer and photoremovable protective group for cytostatic simultaneously.

Solvent: deionized water and 1% Tween 80

# ❖ Human epidermoid carcinoma A-431 (AXL+/VEGFR2-/MET+);

❖ Human embryonic kidney cells HEK293 (AXL-/VEGFR2-/MET-).

The cells were exposed to light irradiation (655-675 nm, 20 J/cm2) using an LED light source.

**Cell lines** 

+ Human breast adenocarcinoma MDA-MB-231 (AXL++/VEGFR2+/MET+);

#### **Methods**

- The photochemical and photophysical properties of the compound were evaluated using a spectrophotometer-spectrofluorometer;
- \* A laser scanning confocal microscope was used to study cellular uptake of conjugate BODIPY-Cab and reference hydroxyl-BODIPY;
- ❖ The effect of compounds on cell viability was estimated using the microculture tetrazolium test (MTT);
- A two-way ANOVA with Tukey's test for multiple comparisons was used for statistical analysis.

### **RESULTS & DISCUSSION**

#### Photophysical measurements

The BODIPY-Cab conjugate absorbs light within the phototherapeutic window ( $\lambda = 650-900$  nm), enabling enhanced light penetration depth.

Table 1. Photophysical characterization of compounds in DMSO

| BODIPY derivative | λ <sub>abs</sub> , nm | λ <sub>em</sub> , nm | Φ <sub>FI</sub> , % | $\Phi_{\Delta}$ , % |
|-------------------|-----------------------|----------------------|---------------------|---------------------|
| hydroxyl-BODIPY   | 364; 638              | 656                  | 9                   | 13                  |
| BODIPY-Cab        | 368; 662              | 678                  | 16                  | 17                  |

#### Cytotoxicity study

The conjugate showed greater toxicity than cabozantinib, indicating the role of BODIPY in the total conjugate activity. On the other hand, the conjugate was less phototoxic than free hydroxyl-BODIPY.

Table 2. *In vitro* light and dark cytotoxic activity

| Tested compound         | Cell line  | IC <sub>50</sub> -light, μM (95% confidence intervals) | IC <sub>50</sub> -dark, μM (95% confidence intervals) |
|-------------------------|------------|--------------------------------------------------------|-------------------------------------------------------|
| BODIPY-Cab              | MDA-MB-231 | 2.04# [1.5-2.7]                                        | 33.74** [29.75-38.25]                                 |
|                         | A-431      | 3.4# [2.9-4.02]                                        | 33.47** [28.85-38.82]                                 |
|                         | HEK293     | 1.7# [1.5-1.98]                                        | 12.89 [11.17-14.88]                                   |
| hydroxyl-BODIPY         | MDA-MB-231 | 1.2" [0.88-1.6]                                        | 32.47* [29.16-36.15]                                  |
|                         | A-431      | 0.88" [0.7-1.1]                                        | 34.97* [33.37–36.65]                                  |
|                         | HEK293     | 0.77" [0.66-0.9]                                       | 2.8 [1.8-4.3]                                         |
| Cabozantinib derivative | MDA-MB-231 |                                                        | 48.75** [43.64-54.47]                                 |
|                         | A-431      |                                                        | 57.17** [50.5-64.72]                                  |
|                         | HEK293     |                                                        | 13.58 [10.26-17.96]                                   |

Statistically significant difference from HEK293 cell line in each group (\*p < 0.01; \*\*p < 0.0001), from BODIPY-Cab in dark conditions (#p < 0.0001), from hydroxyl-BODIPY in dark conditions ("p < 0.0001).

## CONCLUSION

The therapeutic potential of the light-activated prodrug BODIPY-Cab was investigated. The photophysical properties of the conjugate make it possible to use it for photodiagnosis to clarify the localization and size of the tumor focus. The BODIPY-Cab showed a predominantly photosensitizing effect with minimal cytostatic contribution of cabozantinib, which may be due to the low rate of photoinduced release of conjugate fragments.

# FUTURE WORK / REFERENCES

We plan to optimize the design of BODIPY-based prodrugs to fast activation kinetics and improve the selectivity in order to ensure their further practical use.

This work was supported by the Russian Science Foundation under Grant No. 24-13-00179

# Study of cellular uptake of the tested compounds

Qualitative analysis of the confocal images demonstrated a more selective conjugate accumulation in tumor cells with receptors compared to cells without them. The compounds are localized in mitochondria and the endoplasmic reticulum.

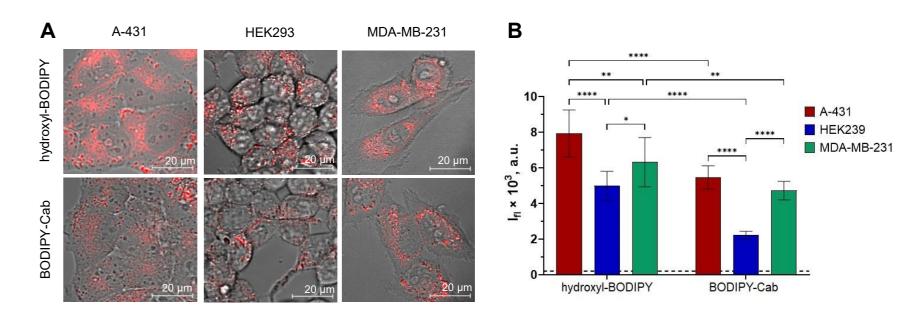



Figure 1. Cellular uptake study of compounds by cells: (A) confocal images of the living cells after 24 h incubation with a tested compound (C =  $5 \mu M$ ); (B) results of the qualitative analysis of the cellular fluorescence signal; means ± SD. Statistically significant differences in relative fluorescence (\*p < 0.1; \*\*p < 0.01; \*\*\*\*p < 0.0001)

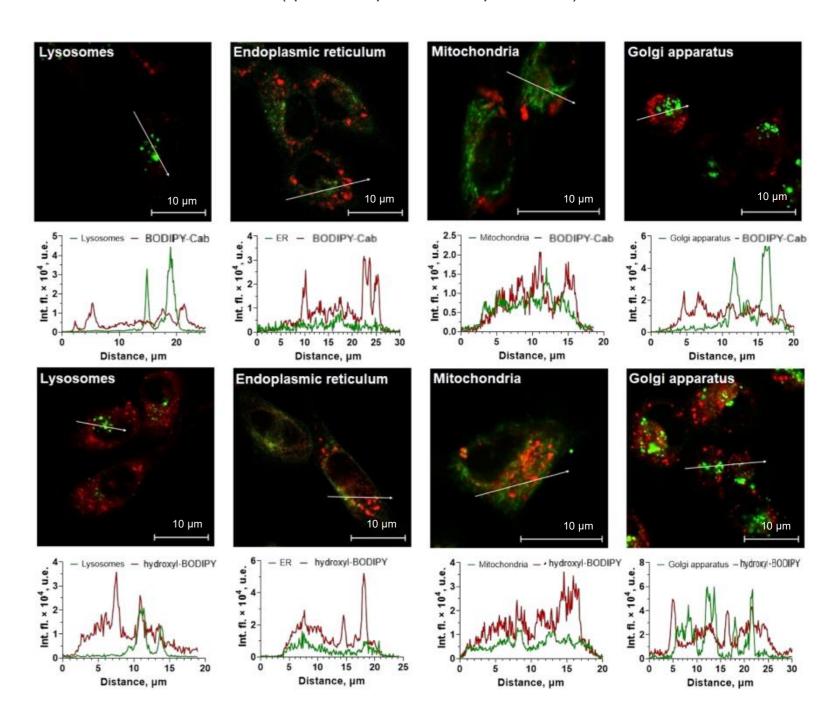



Figure 2. Analysis of intracellular localization of compounds in MDA-MB-231 cells; the merged fluorescent channels for the organelle dyes (green) and the compounds (red) are presented