The 4th International Online Conference on Materials

3-6 November 2025 | Online

Synthesis and Investigation of Tungsten–Copper Oxide Composites for Enhanced Photocatalytic Applications

Janak Paudel¹, Marvin M Bonney¹, Krishna KC¹, Santiago J Dopico¹, Alex J. Kingston¹, Ogooluwa P. Ojo², Taylor Lackey², Ashokkumar Misarilal Sharma², Fumiya Watanabe³, John Nichols * ¹,

¹ School of Physical Science, University of Arkansas at Little Rock, Littlerock, Arkansas 72204, USA

² School of Engineering and Engineering Technology, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, USA

³ Center for Integrative Nanotechnology Science, University of Arkansas at Little Rock, Littlerock, Arkansas 72204, USA

INTRODUCTION & AIM $CB \qquad e^{-} \qquad H_2O \qquad reduction \qquad 2H^+ + 2e^- \rightarrow H_2$ $CB \qquad WO_{2.9} \qquad H^+/H_2$ $CU_2O \qquad WO_{2.9} \qquad CU_2O \qquad WO_{2.9} \qquad CU_2O \qquad CU_2$

- Most renewable energy sources have fluctuating power outputs and are commonly difficult to predict.
- Currently, most industrial H₂ production is extracted from fossil fuels.
- Technological innovations like photochemical water splitting offer a green alternative for H₂ production
- Hydrogen can be stored using existing technologies, making it a viable energy carrier..

Hot Wire Chemical Vapor Deposition

Pyrometer

Power

Supply

- Developing visible-light-driven hydrogen production is key to creating efficient, low-cost photocatalysts
- Tungsten oxide is an efficient at oxidizing H₂O, but ineffective at reducing H₂O.
- Copper oxide is an efficient at reducing H₂O, but ineffective at oxidizing H₂O.
- A Z-scheme geometry between $WO_{2.9}$ and Cu_2O will effectively split H_2O .

Growth Conditions

50

1200

500

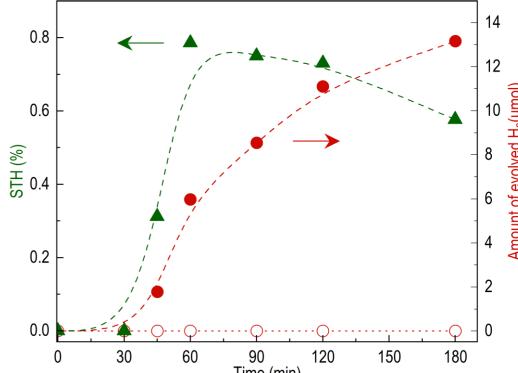
15

 P_{0_2} (mTorr)

T_{filament} (°C)

T_{substrate} (°C)

Δt (min)


Under solar illumination, the synthesized samples exhibit substantial enhancement, confirming its effectiveness as a proficient photocatalyst

0.1 -0.3

-0.2 -0.1

 $Z'(k\Omega)$

During EIS measurements, we observe a twofold reduction in impedance regardless of whether solar light is present

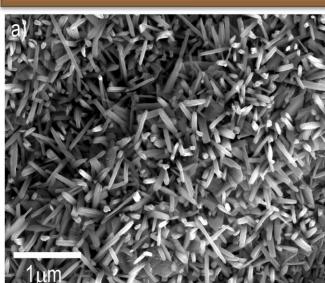
X-ray photoemission spectroscopy

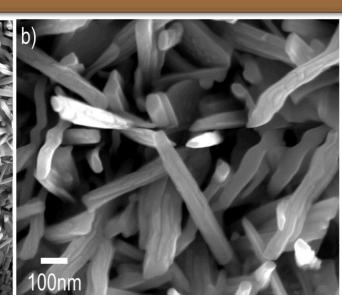
- Presence of multivalent W (W⁵⁺ and W⁶⁺)
 - Average oxidation state of W^{5.8+}
 - Corresponds to WO_{2.9}
- Presence of single valence Cu (Cu¹⁺)
 - Corresponds to Cu₂O
- Indicates presence of H₂ gas after solar illumination
- Maximum STH efficiency ~1%
- Suppression of STH with time due experiment at fixed volume

RESULTS & DISCUSSION

substrates (Cu₂O//Cu).

tungsten oxide.

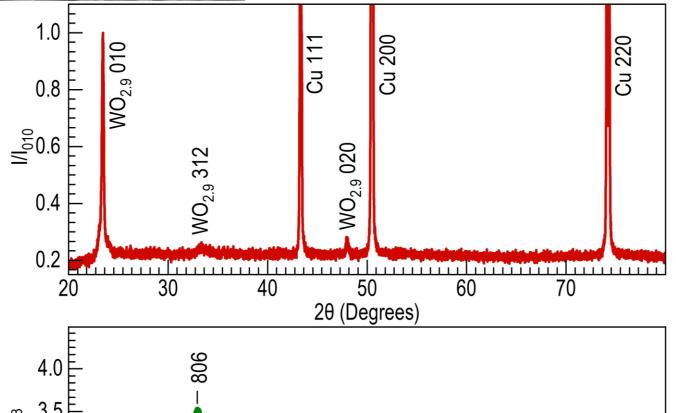

METHOD


Tungsten filaments are heated

above the vapor temperature of

nanostructures

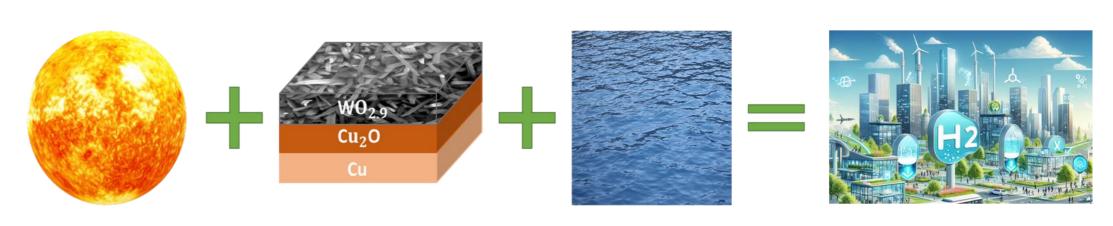
synthesized on oxidized copper


SEM characterization revealed that the copper tungsten oxide thin films exhibit a nanorod-shaped nanostructure with a diameter of ~50 nm

X-ray diffraction

- WO_{2.9} is dominant phase
- WO_{2.9} has preferential growth along b-axis
- Cu₂O signal is likely screened by WO_{2,9} nanostructures

Raman


- Sensitive to M-O-M bond stretching and bending
- Features *above* 240 cm⁻¹ attributed to WO_{2.9}
- Features below 240 cm⁻¹ attributed to Cu₂O

20 30 40 50 60 70 20 (Degrees) 4.0 (SOLUTION 100) (SOL

CONCLUSION/ FUTURE WORK

- We successfully fabricated $WO_{2.9}$ nanostructures on Cu_2O thin films on Cu substrates utilizing the HWCVD technique.
- The samples were photo-catalytically active with an STH efficiency of about 1% without any external bias voltage in water splitting testing in deionized water under illumination of simulated solar light.
- The simple synthesis and alternative material for hydrogen production offer a cost-effective approach, showcasing potential for advanced photocatalysts in next-generation fuel production.

REFERENCES

- . Navarro, R. M., et al. (2009/01/01). "Photocatalytic Water Splitting Under Visible Light: Concept and Catalysts Development." Advances in Chemical Engineering Photocatalytic Technologies **36**.
- Acharya, R., et al. (2018-05-16). "Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction." Beilstein Journal of Nanotechnology 9(1).
- Hu, C.-C., et al. (2008/09/01). "Electrodeposited p-type Cu2O as photocatalyst for H2 evolution from water reduction in the presence of WO3." Solar Energy Materials and Solar Cells 92(9).
 X. Chen, S. Shen, L. Guo, and S. S. Mao (2010), "Chen, X., et al. (November 10, 2010).
- "Semiconductor-based Photocatalytic Hydrogen Generation." <u>Chemical Reviews</u> **110**(11).

 5. KC, K., et al. (2025/01/21). "A single-step low-cost synthesis of tungsten oxide nanostructures by resistive hot wire oxidation." <u>CrystEngComm</u> **27**(4).
- 6. Janak, P., et al. (2025/05/26). "Z-Scheme Tungsten Copper Oxide for Photocatalytic Water Splitting." J. Phys. Chem. C **129**(22).