The 4th International Online Conference on Materials

03-05 November 2025 | Online

Recent Advances in Fiber-Reinforced Biopolymers Derived from Rice Husk Waste for Sustainable Construction Materials

Pabina Rani Boro, Partha Protim Borthakur, Madhujya Saikia, Rupam Deka Department of Mechanical Engineering, Dibrugarh University, Dibrugarh, 786004, India

INTRODUCTION & AIM

The increasing demand for sustainable and environmentally friendly construction materials has spurred interest in biopolymer composites reinforced with agricultural waste. Rice husk (RH), a byproduct of rice milling, is abundant and rich in lignocellulosic fibers and silica, making it an excellent for use in fiber-reinforced biopolymers. This study investigates recent developments in RH-reinforced biopolymer composites and evaluates their potential in construction applications due to their mechanical, thermal, and ecological advantages.

METHOD

Rice husk was subjected to alkaline treatment using 5% NaOH to remove surface impurities and enhance fiber—matrix interaction. The treated fibers were incorporated into various polymer matrices including low-density polyethylene (LDPE), polylactic acid (PLA), epoxy resin, and unsaturated polyester. The composites were fabricated through melt blending and compression molding techniques.

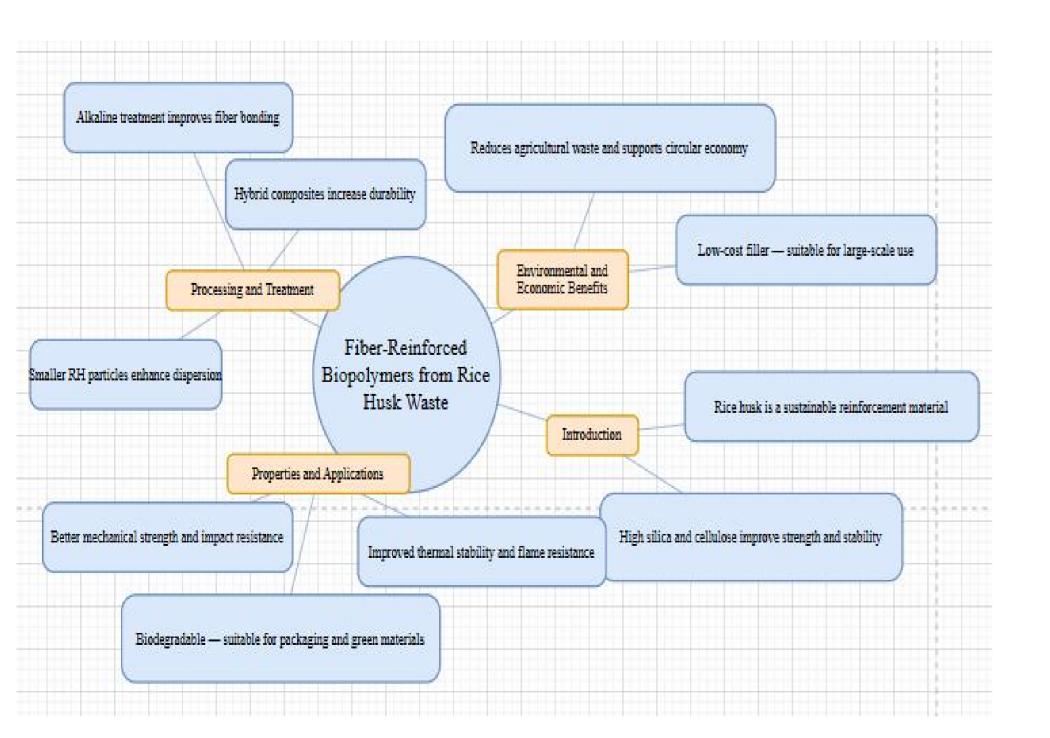


Figure 1: Fiber-Reinforced Biopolymers from Rice Husk Waste

RESULTS & DISCUSSION

Overall improvement: Incorporation of RH enhanced the mechanical performance of all tested polymer systems.

Tensile strength: LDPE/RH composites showed a 25% increase, rising from 13.2 MPa to 16.5 MPa.

Flexural strength: Epoxy/RH composites demonstrated a 32% improvement compared to pure epoxy.

Hardness: Surface-treated RH composites exhibited an 18% increase in hardness.

Compressive strength: RH ash addition enhanced the compressive strength of cementitious composites by 15%.

Biodegradability: Composites containing RH particles <250 μm achieved 60% degradation after 90 days.

Soil reinforcement: RH biochar and chitosan-treated soils showed a 22% increase in shear strength.

CONCLUSION

Sustainable alternative: Rice husk fiber-reinforced biopolymers are promising eco-friendly substitutes for conventional construction materials.

Enhanced performance: They exhibit improved mechanical strength, thermal stability, and biodegradability.

Versatile applications: Suitable for panels, insulation materials, cementitious composites, and soil reinforcement.

Environmental benefit: Promote circular economy practices and reduce construction-related waste.

Future focus: Research should emphasize large-scale implementation, cost-effectiveness, and long-term durability assessment.

REFERENCES

References

[1] Rout, A. K., & Satapathy, A. (2012). Development and characterization of rice husk-filled glass fiber-reinforced epoxy biocomposites. Composites: Mechanics, C o m p u t a t i o n s , A p p l i c a t i o n s , 3 (2), 9 5 - 1 0 6 . https://doi.org/10.1615/CompMechComputApplIntJ.v3.i2.10

[2] Borthakur, B., & Borthakur, P. P. (2024). The role of thermal analysis in engine fin design: Insights and perspectives. Recent Patents on Engineering, 18(8), 153–161. https://doi.org/10.2174/0118722121266385230926130027

[3] Borthakur, P. P. (2025). Nanoparticle enhanced biodiesel blends: Recent insights and developments. Hybrid Advances, 10, 100442. https://doi.org/10.1016/j.hybadv.2025.100442

[4] Sonowal, K., Borthakur, P. P., Baruah, E., & Boro, P. R. (2025). Engineering TiO₂ nanoparticles: Properties, synthesis and applications in modern industries. In Emerging frontiers in mechanical engineering research: Multidisciplinary research perspectives (Vol. 1, pp. 49–71). Aikinik Publisher.

[5] Borthakur, P. P., Buragohain, M., Kalita, I., Nath, H. R., Kashyap, R., & Mudoi, D. (2025). Design and fabrication of a manual wire stirrup machine. Indian Journal of Natural Sciences, 89(1). Tamil Nadu Scientific Research Organization.

[6] Boro, P. R., Borthakur, P. P., Baruah, E., Deka, R., & Sonowal, K. (2025). A review of properties, synthesis procedure, characterization and application for silicon oxide nanoparticles. In Emerging frontiers in mechanical engineering research: Multidisciplinary research perspectives (Vol. 1, pp. 73–99). Aikinik Publication.

[7] Ramarao, M., Sakthikumar, P., Raju, K., Sathiyamurthy, S., & Senthilkumar, M. (2024). Investigation on mechanical properties of reinforced epoxy resin with sawdust,

seashell and rice husk composites. International Journal of Vehicle Structures and Systems, 16(1), 118–120 https://doi.org/10/4273/ijvsn1611/24vent/10CM2025