The 4th International Online Conference on Materials

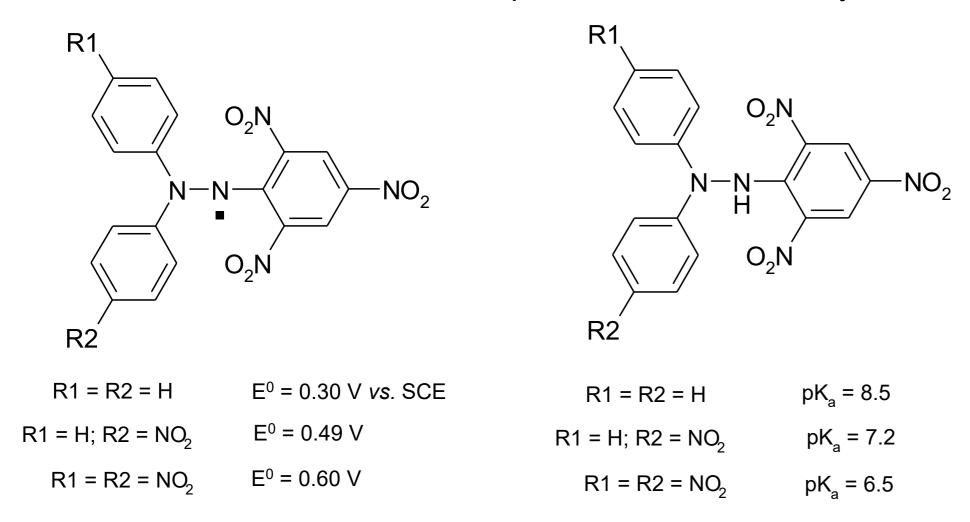
3-6 November 2025 | Online

Stable Hydrazyl Radicals as Redox Active Materials

Petre IONITA

University of Bucharest, Faculty of Chemistry, 90 Panduri, Bucharest, Romania

INTRODUCTION & AIM


- Stable organic compounds with unpaired electrons (open-shell molecules) are known as free radicals, and usually they possess fascinating and unique properties, the most important being their redox behaviour.
- Stable hydrazyl free radicals are ideal redox species for such new batteries. To this moment, the well-known DPPH free radical (2,2diphenyl-1-picrylhydrazyl) was tested as redox mediator in a lithiumgraphene battery [1].
- Organic radical batteries promise an improvement on all characteristics of classical batteries, regarding freedom from rare metals, faster charging time, environmental friendliness, and so on.
- Stable hydrazyl free radicals are ideal redox species for such new batteries.

METHOD

- This work was primarily focused on the synthesis and characterization of a large number of such stable hydrazyl (di)radicals, thus tailoring their redox properties, by chemical design.
- Structural characterization was performed by NMR, IR, UV-Vis, MS, (para)magnetic measurements (ESR, SQUID), and cyclic voltammetry, that allows the evaluation of the redox properties.

RESULTS & DISCUSSION

- Structures of the DPPH free radical derivatives were confirmed by different means. Electrochemistry was performed for both stable and persistent free (di)radicals [2].
- As expected, stable radicals showed a full reversible redox process. The oxidation potential usually ranges in the domain 0.5-1.5 V, higher values being recorded for poly-nitrated radicals and diradicals.
- The bond dissociation energy of the -NH- group (hydrazine-hydrazyl) is around 70-90 kcal/mol. Further experiments are underway.

Figure 1. Typical structures of hydrazyls/hydrazines and their acid-base and redox characteristics.

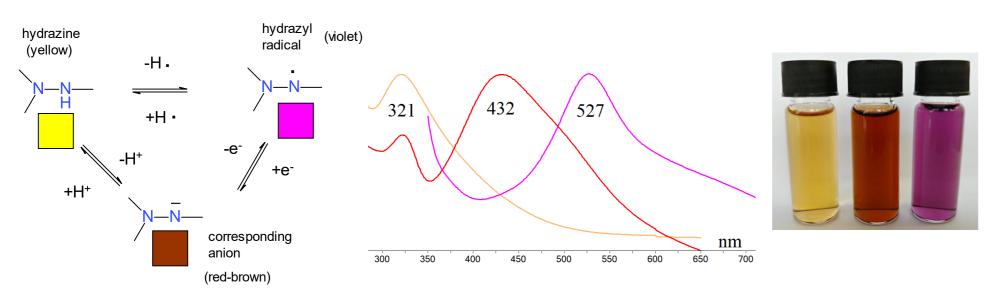


Figure 2. Each process is accompanied by colour changes.

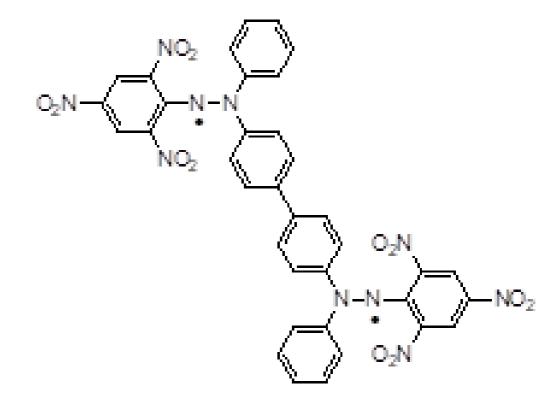
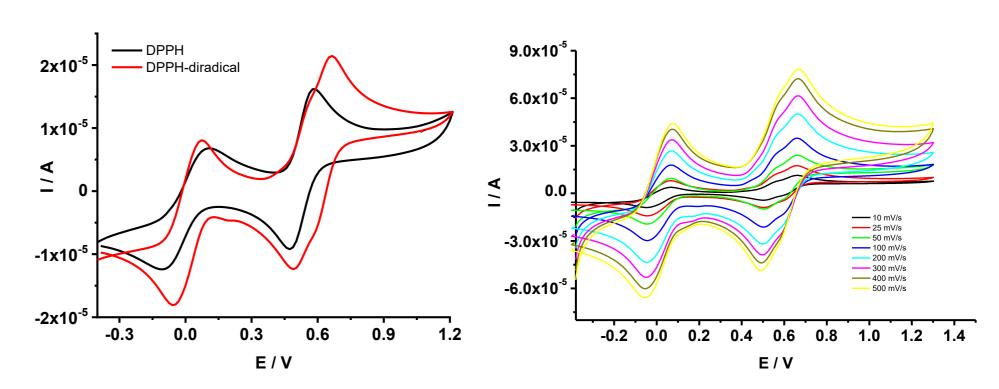



Figure 3. Structure of the DPPH-diradical.

Figure 4. Typical CVs of hydrazyls: left) DPPH and DPPH-diradical; right) DPPH-diradical at different CV speeds.

- Both oxidation and reduction processes were reversible.
- Different compounds have different properties, thus allowing a design by synthesis for specific required characteristics.
- Diradicals can swich thermally from singlet state to triplet state [2].

Table 1. Electrochemical parameters for DPPH and DPPH-diradical.

	I_{a1}	E_{a1}	I_{a2}	E_{a2}	I_{c1}	E_{c1}	I_{c2}	E_{c2}	ΔEp1	Δ Ep2	I_a/I
	(μA)	(V)	(μA)	(V)	(µA)	(V)	(μA)	(V)	(V)	(V)	(1)
DPPH	8.27	0.102	10.98	0.620	-7.23	-0.101	10.82	0.478	0.203	0.142	1.1
DPPH-											
diradical	12.86	0.073	15.89	0.662	-12.02	-0.050	-9.25	0.497	0.123	0.165	1.0

- Stable hydrazyl radicals are proved as possible redox mediators for organic batteries.
- Besides, full-organic batteries can be envisaged.

ACKNOWLEDGEMENTS

UEFISCDI support from the project number PN-IV-P1-PCE2023-0267 is gratefully recognized.

CONCLUSION

- The use of stable hydrazyl radicals in organic batteries might be an important step towards a new technology for generation and storage of electrical energy.
- New encouraging experiments are undergoing, showing applicative interests.

REFERENCES

[1]. Boosting the electrochemical performance of Li-O2 batteries with DPPH redox mediator and graphene-luteolin-protected lithium anode. Bai, W.L.; Zhang, Z.; Chen, X.; Wei, X.; Zhang, Q.; Xu, Z.X.; Liu, Y.S.; Chang, B.; Wang, K.X.; Chen, J.S. Energy Storage Mater., 2020, 31, 373-381. DOI: 10.1016/j.ensm.2020.06.036

[2]. Dimer of the DPPH stable radical. A. Dobre, C. Lete, N. Iacob, V. Kuncser, A. Mădălan, G. Ionita, M. Harada, Y. Kitagawa, P. Ionita. ACS Omega, 2025, 10, 36662-36671. DOI: 10.1021/acsomega.5c05905