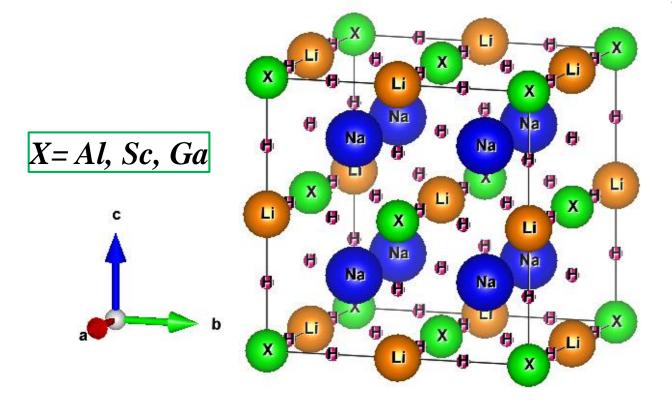
The 4th International Online Conference on Materials

3-6 November 2025 | Online

Double Hydride Perovskites as Promising Materials for Clean Energy Storage: A First-Principles (DFT) Study



Maryam AYAD ¹ Lalla Btissam DRISSI^{1,2,3} Chaymaa KASBAOUI^{1,2}

- ¹ LPHE, Modeling & Simulations, Faculty of Science, Mohammed V University in Rabat, Morocco
- ² CPM, Centre of Physics and Mathematics, Faculty of Science, Mohammed V University in Rabat, Morocco
- ³ College of Physical and Chemical Sciences, Hassan II Academy of Science and Technology, Rabat, Morocco

INTRODUCTION & AIM

Hydrogen is a light, abundant, and clean fuel with great potential for sustainable energy storage and conversion. Among solid-state hydrogen storage materials, double hydride perovskites have emerged as promising candidates due to their high hydrogen content, tunable properties, and structural stability. In this study, we investigate Na₂LiXH₆ (X = Al, Sc, Ga) double hydride perovskites to explore their structural, electronic, hydrogen storage, and optical properties. The goal is to assess their stability and suitability for efficient hydrogen storage applications.

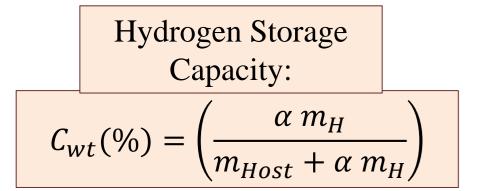
Space Groupe: Fm-3m Atoms positions:

H = (0.25, 0, 0) Li = (0.5, 0.5, 0.5)X = (0, 0, 0)

Na = (0.25, 0.25, 0.25)

Fig.1. Crystal structure of the Na₂LiXH₆ (X = Al, Sc, Ga), hydride double perovskites.

METHOD


- •First-principles FP-LAPW method within the DFT framework (*Wien2k package*)
- Exchange-correlation contribution: GGA-PBE approximation

RESULTS & DISCUSSION

1. Structural and Hydrogen Storage Properties:

Formation Energy:

$$\Delta E_f(Na_2LiXH_6) = \sum_{i} E_{Na_2LiXH_6} (2E_{Na} + E_{Li} + E_X + 6E_H)$$

Desorption Temperature:

$$\boldsymbol{T_d} = \left(-\frac{\Delta \boldsymbol{E_f}}{\Delta \boldsymbol{S}}\right)$$

DHP	a(Å)	ΔE_f (eV/atom)	$C_{wt}(\%)$	T_d	E_g (eV) "fig.2"	
Na ₂ LiAlH ₆	7.29	- 1.52	7.05	373.9	2.60	
Na₂LiScH ₆	8.01	- 1.45	5.82	356.8	2.17	
Na₂LiGaH ₆	7.35	- 1.37	4.71	337.1	0.66	

Table.1.. a(Å) lattice parameter, ΔE_f formation energy, C_{wt} (%) hydrogen storage capacity, T_d desorption temperature and E_g (eV) gap energy of Na₂LiAlH₆, Na₂LiScH₆, and Na₂LiGaH₆

RESULTS & DISCUSSION

3. Electronic properties:

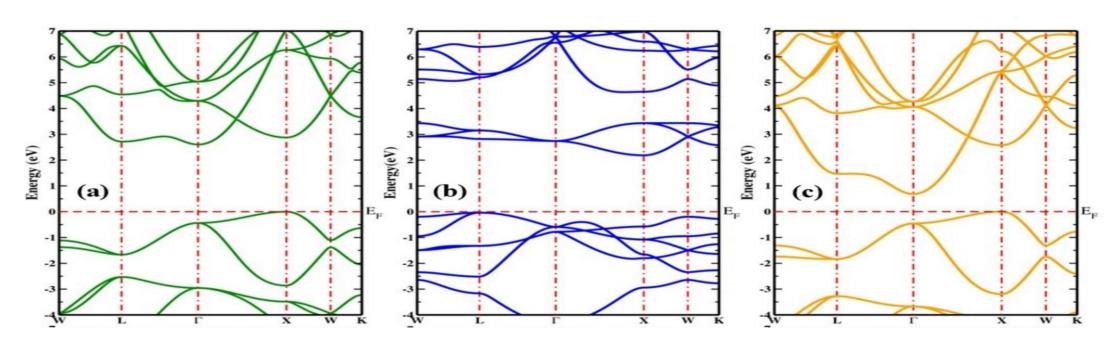


Fig.2.. Band structures obtained using PBE-GGA for (a) Na₂LiAlH₆, (b) Na₂LiScH₆, and (c) Na₂LiGaH₆

3. Optical Properties:

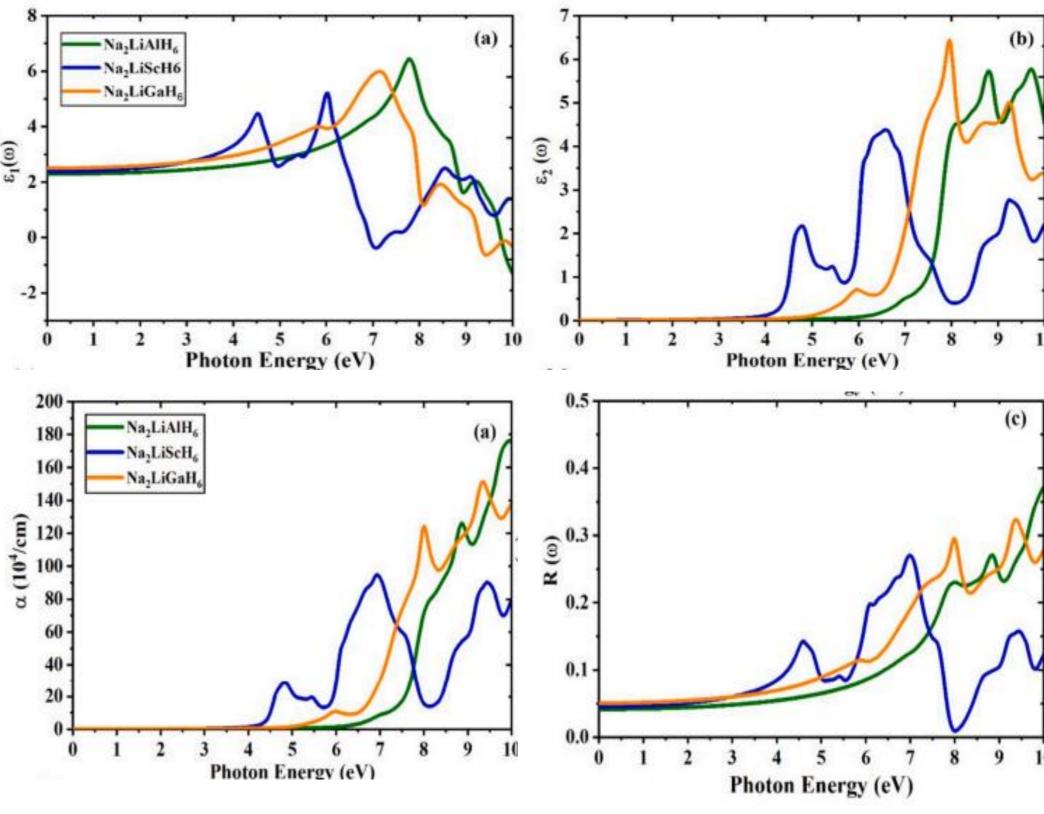


Fig.2.. Optical properties of Na₂LiAlH₆, Na₂LiScH₆, and Na₂LiGaH₆ using PBE-GGA

CONCLUSION

This study investigates the structural, electronic, and optical properties of double hydride perovskites Na₂LiXH₆ (X = Al, Sc, Ga) using first-principles FP-LAPW calculations in Wien2k, revealing dynamically stable cubic structures with indirect band-gap semiconducting behavior suitable for hydrogen storage and optoelectronic applications.

FUTURE WORK / REFERENCES

- [1] Ayyaz, Ahmad, et al. "Exploring hydrogen storage potential, thermodynamic, and optoelectronic characteristics of novel double perovskite hydrides Na2LiXH6 (X= Al, Sc, and Ga): DFT analysis." Journal of Energy Storage 122 (2025): 116650.
- [2] Ayad, M., et al. "Engineering (Ge/Sn)-Mn halide double perovskites for spintronics, optoelectronics, and energy conversion." Journal of Physics and Chemistry of Solids (2025): 113254.