
1 

 

 
http://www.sciforum.net/conference/wsf-4 

World Sustainability Forum 2014 – Conference Proceedings Paper 

Effects of Velocity and Thermal Boundary Layer with 

Sustainable Thermal Control Across Flat Plates  

Pius Okpara 
1
, Emmanuel O.B. Ogedengbe 

1,* 
and Marc A. Rosen 

2
  

 
1
 Energhx Research Group, Department of Mechanical Engineering, 353 Faculty of Engineering,   

University of Lagos, Akoka-Yaba, Lagos, 101017, Nigeria 
2
 Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 

2000 Simcoe Street North, Oshawa, ON, L1H 7K4, Canada 

E-Mails: ogedengbe@energhx.com (E.O.B.O.); gmt4popat2012@gmail.com (P. O.); 

marc.rosen@uoit.ca (M.A. R.) 

* Author to whom correspondence should be addressed; Tel.: +234-703-668-9827  

 

ABSTRACT: Numerical simulations of boundary layers play a significant role in the study 

and interpretation of physical experiments for theoretical explanations of boundary layer 

disturbances. The influence of thermal boundary layer on the control of heat transport 

across flat plates is particularly examined. The Crank-Nicolson differential method, which 

is widely favoured for finite-difference modelling of boundary layer equations, is reviewed. 

The stability of this method is compared with other numerical approaches in order to 

establish the appropriate scheme for sustainable applications, involving the design of any 

conjugate system with heat transfer between the solid and fluid interface. Specific 

applications to the analysis of cabin comfort in automobiles are anticipated.  
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1. Introduction 

A fluid is generally defined as any substance or matter in a readily distorted form such that it 

deforms continuously when subjected to a shear stress or an unbalanced external force no matter 

how small [1]. When real fluid motions are observed, two basic types of motion are seen. The 
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first is a smooth motion in which fluid elements or particles appear to slide over each other in 

layers, or laminar flow. The second is characterized by random or chaotic motion of individual 

particles, often with eddies of different sizes, or turbulent flow [2]. The influence of viscosity is 

dominant in the boundary layer region, especially with increasing Reynolds number. When a 

fluid moves over a solid surface, the impact of viscosity (and thermal conductivity) within the 

velocity and thermal boundary layer is significant. This phenomenon is particularly evident in a 

conjugate heat transfer system of a solid (e.g., flat plate) and a fluid. Flow over a surface is 

divided into two regions: a region far from the surface of the body in which the effects of such 

fluid properties as viscosity and thermal conductivity is negligible and a thin region close to the 

surface where these properties are not negligible. This thin layer of fluid in which the effects of 

viscosity and thermal conductivity are important is called a boundary layer [3]. If one is 

interested in fluid momentum, the boundary layer can be described as a region where fluid 

particles' local velocity,��, is 99% of the free stream velocity of the ambient fluid, �∞ [4]. 

Studies on boundary layer flows have significantly increased our understanding of effective 

velocity and temperature within the zone of the boundary layer.  

 

The effects of velocity and thermal boundary layer flow over a moving surface with temperature 

dependent viscosity is considered in the present study. In many practical fields, there are 

significant temperature differences between the surface of a hot body and the free stream. These 

temperature differences cause density gradients in the fluid medium. This means that the 

boundary layer flow should not be confined to fluid with uniform viscosity. It is known that this 

physical property may change significantly with temperature. Conjugate heat transfer (CHT) is 

the interaction between the heat conduction inside the solid body and the heat transfer in the 

surrounding fluid. Boundary layer flows are an important consideration in modern computational 

fluid dynamics [5]. The fundamental governing equations of fluid dynamics are the basis of 

computational fluid dynamics, and include the continuity equation: 
���� + ���� = 0 [6], momentum 

equations: U ���� + V ���� = − �ρ ���� +ν(�����	� + �����	�) and U ���� + V ���� = − �ρ ���� +
ν(������ + ������) [7][8], and energy equations: U ���� + V ���� = �ρ�� �����	� + μ(�)ρ�� �����	� [9]. Note that 

the examples in the previous sentence are for two-dimensional flows. These equations are 

statements of the conservation laws of physics upon which all fluid dynamics is based, including 

the first law of thermodynamics [10]. 

 

In recent years studies on boundary layer theory have increased due to their wide range of 

applications in engineering and industry, e.g., in high speed flows (fighter aircrafts) and in 

industrial flows such as conveyors [11-12]. Flows over moving surfaces are also observed in 

high speed flows in nuclear reactors, pollutants emission in refineries, and materials handling in 

industries [13]. An understanding of boundary layer flow over a moving surface with 

temperature dependent viscosity is important to improving these and similar applications. This 
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study investigates boundary layer flow over moving flat surface with temperature dependent 

viscosity with the objective of solving the velocity and thermal boundary layer equation in 

laminar flow by discretizing the equation using the Finite-Volume Method and then does the 

simulation using Visual studio. Beyond improving present understanding of the effects of 

velocity and thermal boundary layer on the control of temperature gradient across a flat plate, 

this study also forms the basis for further studies on the application of boundary layer flows to 

sustainable development of automobiles with efficient control of cabin comfort.  

 

2. Methodology 

2.1 Model development 

We consider here a model formulation for steady, two-dimensional flow in the (x, y)-plane in 

Cartesian coordinates. Consider the fluid flow geometry for a boundary layer flow over a moving 

flat surface (e.g., a car roof as in Fig. 1), over which flows a fluid having a temperature-

dependent viscosity (moist air or water).  

   
Figure 1: Schematic view of a car in motion.  

 

The boundary layer thickness, �(x) is shown in Fig. 2. 

 

 
Figure 2: Velocity and thermal boundary layer flow geometry with conjugate heat transfer on a 

moving car model. 
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2.2 Governing Equation 

The governing boundary layer equations of the flow are transformed into a dimensionless system 

of equations using a similarity variable (x, y). The resulting sets of coupled non-linear ordinary 

differential equations are solved numerically by applying a shooting iteration technique with the 

Crank-Nicolson approach.  

We consider the following conditions: 

� Steady flow. 

� Two-dimensional flow. 

� Laminar boundary layer flow. 

� Viscous incompressible Newtonian fluid. 

� Moving flat surface with variable plate velocity (car roof), Up(x) and streaming free 

stream edge velocity Ue(x) parallel to the surface. 

� No suction and injection at the solid surface, so v(x; 0) = V(x; 1) = 0. 

� Uniform temperature of the flat surface, Tw. 

� For boundary layer flow over a moving flat surface with temperature dependent viscosity, 

a temperature dependent viscous term, �, expressed as �(T). 

Following the Ling and Dybbs model [14] this temperature-dependent dynamic viscosity can be 

expressed as: 

                                  �(�) = �∞���(���∞)                                                             (1) 

Two dimensional boundary layer equations for boundary layer flow over a moving surface with 

temperature dependent viscosity are given by: 

 

                   
���� + ���� = 0                                        [Continuity Equation]                                    (2)                                                          

 

                U
���� + V ���� = − �ρ ���� +ν ������              [x-Momentum Equation]                               (3) 

 

                  0 = -	 �ρ ����                                             [y-Momentum Equation]                              (4) 

 

                   U ���� + V ���� = �ρ�� �����	� + μ(�)ρ�� �����	�      [Energy equation]                                         (5) 

 

The following boundary conditions apply: 

1. At the wall: u(x; 0) = � (x);   v(x; 0) = 0;    T(x; 0) = �! 

2. At the edge: as y → ∞;    u(x;	∞) = �#(x); v(x;	∞) = 0;    T(x;	∞) = �%For the y-

momentum	&quation a'(lysi), +ℎ&	pressure ac-.ss the bounda-/ layer and edge are 

constant, i.e., 

       
0 01 = 0�01= 0        

This implies p = p(x). Therefore:  
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  − �2 3 34 = �& 05#04                           (6) 

The x-direction boundary layer equation becomes: 

 U
���� + V ���� = �& 05#04 + �6 ��� 7�8�9 :�:/;                                        (7) 

We assume power law variations in Up(x) and Ue(x), i.e. 

    � (x) = <=�!                      (8) 

 �#(x) = <=�%                                                                    (9) 

where	�% and �!  are constant reference velocities.  

The pressure gradient is given as: 

     n=
4∪(4) 3∪(4)34                      (10) 

where: 

 �4 = (�% + �!)	<= = ?�<=;                      (11) 

 ?� = �! + �%                        (12) 

Since both the fluid and the surface are moving, we consider the boundary layer flow at a 

specific local point. Therefore, we deal with local variables and non-dimensional terms, and 

define the Reynolds number based on distance x along the wall. Hence this local Reynolds 

number can be written as: 

     @&4 = 5(4).4B = 25(4).4�C                    (13) 

2.3 Resolving the Velocity Boundary Layer using Finite Volume Method 

 

The solution to Eqns. 1 – 13 can be obtained using the finite-difference based Crank-Nicolson 

method. However, special numerical technique is required in order to super-impose the obtained 

velocity and temperature distribution on the staggered grid of finite volume method for solving 

the distribution within the solid domain (as represented by the car grid in Fig. 3). 

      

   FLUID      CAR 

Figure 3: Discretization of the flowing fluid and overhead roof computational domain. 

Legend: 
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 and  are control volumes 

 are grid nodes (boundary nodes) 

 are finite volume computational nodes 

 

 

               

(a)                                                                               (b)   

Figure 4: (a) Momentum equation molecule and (b) continuity equation molecule. 

                                                                                                                                                                                                      

STEP 1. DISCRETIZING MOMENTUM DIMENSIONLESS EQUATION 

                                    ƒEFξF ƒHIJI 		+ 		VKF �ƒHI�L 		= 	 81 − ƒE�F9βF 		+		��ƒHI�L�                                     

 

               1
st 

term                         2
nd

 term             3
rd

 term                             4
th

 term. 

1
ST

 TERM: ƒEFξF ƒHIJI  
                              ξƒE �ƒH�J O JPQRSHPQR7R�;,TU7R�;VƒHPQR7R�;,TU(R/�)			�ƒHPQ7R�;,TU7R�;XYJ                (14)                 

2
ND

 TERM: VKF �ƒHI�L  

VK �ƒH�L O �ZVK[�7R�;,\�7R�; ]ƒ
HPQ7R�;,TQ7R�;�ƒHPQ7R�;,TUR7R�;ZYL + ƒHPQ7R�;,TQ7R�;�ƒHPQR7R�;,TUR7R�;ZYL ^        (15) 

 

3
RD

 TERM: 81 − ƒE� F9βF 
               β81 − ƒEZ9 = β[��(1 − ƒE[��7R�;,\�7R�;. ƒE[�7R�;,\�7R�;	)                            (16) 
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4
TH

 TERM: 
��ƒHI�L�   	��ƒH�L� O�Z Vƒ,PQ7R�;,TQ7R�;�ZƒHPQ7R�;,TU7R�;�ƒHPQ7R�;,TUR7R�;(YL)� +

ƒHPQR7R�;,TQ(R/�)	�ZƒHPQR7R�;,TU7R�;�ƒHPQR7R�;,TU7R�;(YL)� X                  (17) 

Notes:  

� The essence of averaging 
�S�L at point m and m+1 is the essential characteristic of the 

Crank-Nicolson method. 

� Discretization is used to linearize continuity and momentum equations. 

� Linear functions ƒE at m+1 are known. 

� The only known value of transformed momentum equation is VK[,\. 

� The known value of VK[,\ allows us to solve for ƒE in the transformed momentum 

equation; then the value is used to evaluate the transformed continuity equation to obtain VK. 

� The Crank-Nicolson method is implicit because we solve for all values of ƒE at all times. 

� Implicit methods are known to be very stable and to allow large step sizes in the ξF 
direction with good accuracy. 

Combining the terms, we have: JPQRSHPQR7R�;,TU7R�;VƒHPQR7R�;,TU(R/�)			�ƒHPQ7R�;,TU7R�;XYJ +
�ZVK[�7R�;,\�7R�; ]ƒ

HPQ7R�;,TQ7R�;�ƒHPQ7R�;,TUR7R�;ZYL + ƒHPQ7R�;,TQ7R�;�ƒHPQR7R�;,TUR7R�;ZYL ^ = β[��(1 −
ƒE[��7R�;,\�7R�;. ƒE[�7R�;,\�7R�;	) 	+ �Z Vƒ,PQ7R�;,TQ7R�;�ZƒHPQ7R�;,TU7R�;�ƒHPQ7R�;,TUR7R�;(YL)� +
ƒHPQR7R�;,TQ(R/�)	�ZƒHPQR7R�;,TU7R�;�ƒHPQR7R�;,TU7R�;(YL)� X                                                              (18) 

 

Equation 18 is the finite volume momentum equation and it contains unknowns ƒE[�7R�;,\�7R�;, ƒ,[��7R�;,\�7R�;, and ƒE[��7R�;,\�7R�;, which have the form: 

                             A[�7R�;\�7R�;ƒE[��7R�;,\�7R�; + B[�7R�;\�7R�;ƒE[��7R�;,\�7R�; + C[�7R�;,\�7R�;ƒE[��7R�;,\��7R�; =D[�7R�;\�7R�;                                                                                            (19) 
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On comparing the coefficients, we note the following: 

A[�7�Z;\�7�Z; = VKm+d12f,n−d12f4Δη − 12(Δη)2 

B[�7R�;\�7R�; = ξm+1ƒ′m+712;,n−712; 1Δξ+β[��ƒE[�7R�;,\�7R�; + �(YL)�                                 (20) 

C[�7�Z;,\�7�Z; = −lVKm+d12f,n−d12f4Δη + 12(Δη)2m 

D[�7R�;\�7R�; = βm+1+ ξm+1ƒ′2m+712;,n−712; 1Δξ−VKm+712;,n−712; ƒ
′m+d12f,n+d12f−ƒ′m+d12f,n−1d12f4Δη 	 

+

ƒHPQ7R�;,TQ7R�;U�ƒHPQ7R�;,TU7R�;QƒHPQ7R�;,TUR7R�;nYL  

Since at m+1(1/2) level (A, B and C), ƒEare unknown and at point m+(1/2), ƒEare known then, it is 

possible to drop the m+ 7�Z; and m+ 1(1/2) notation. Therefore, we have: 

               A\�7R�;ƒE\�7R�; + B\�7R�;ƒE\�7R�; + C\�7R�;ƒE\��7R�; = D\�7R�;                                           (21) 

 

STEP 2. DISCRETIZING CONTINUITY DIMENSIONLESS EQUATION 

                              ξ �ƒH�J 		+ 		βƒE 		+		LZ (β − 1) �ƒH�L 		+ 		�o�L = 0  

 

                       1st Term            2nd Term             3rd Term               4th Term 

 

1
ST

 TERM: ξ �ƒH�J  

                          ξ �ƒH�J = �Z ξ[�� pƒHPQR7R�;,TU7R�;�ƒHPQ7R�;,TU7R�;YJ + ƒHPQR7R�;,TUR7R�;�ƒHPQ7R�;,TUR7R�;YJ q                      (22) 

2
ND

 TERM: βƒE 
 

   βƒE = �n β[�� rƒE[�7R�;,\�7R�; + ƒE[�7R�;,\��7R�; + ƒE[��7R�;,\�7R�; + ƒE[��7R�;,\��7R�;s                    (23) 

 

3
RD

 TERM: 
�Z η(β − 1) �ƒH�L 

                         

�Z η(β − 1) �ƒH�L = �n η\��(β[�� − 1) pƒHPQ7R�;,TU7R�;�ƒHPQ7R�;,TUR7R�;YL + ƒHPQR7R�;,TU7R�;�ƒHPQR7R�;,TUR7R�;YL q     (24) 
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4
TH

 TERM: 
�o�L 

                                           �o�L = �Z poPQ7R�;,TU7R�;�oPQ7R�;,TUR7R�;YL + oPQR7R�;,TU7R�;�oPQR7R�;,TUR7R�;YL q                                 (25) 

 

Substituting the finite difference equations in equation (23) to (26) into the continuity equation, 

we have: �Z ξ[�� pƒHPQR7R�;,TU7R�;�ƒHPQ7R�;,TU7R�;YJ + ƒHPQR7R�;,TUR7R�;�ƒHPQ7R�;,TUR7R�;YJ q +
14 βm+1 rƒ′m+712;,n−712; + ƒ′m+712;,n−1712; + ƒ′m+1712;,n−712; + ƒ′m+1712;,n−1712;s + 14 ηn−18βm+1 −
19 pƒ′m+712;,n−712;−ƒ′m+712;,n−1712;Δη + ƒ′m+1712;,n−712;−ƒ′m+1712;,n−1712;Δη q + �Z poPQ7R�;,TU7R�;�oPQ7R�;,TUR7R�;YL +
oPQR7R�;,TU7R�;�oPQR7R�;,TUR7R�;YL q = 0                                                                           (26) 

 

All variables in equation (26) are known except V[��7R�;,\�7R�;. Collecting like terms, the above 

equation becomes V[��7R�;,\�7R�; = V[��7R�;,\��7R�; + V[�7R�;,\��7R�; − V[7R�;,\�7R�; + 2Δη V]− 14 βm+1 −
12Δξ ξm+1 − 14Δη ηn−18βm+1 − 19^ ƒE[��7R�;,\�7R�; + ]− 14 βm+1 − 12Δξ ξm+1 + 14Δη ηn−18βm+1 −
19^ ƒE[��7R�;,\��7R�; + ]− 14 βm+1 + 12Δξ ξm+1 − 14Δη ηn−18βm+1 − 19^ ƒE	[�7R�;,\�7R�; +]− 14 βm+1 + 12Δξ ξm+1 + 14Δη ηn−18βm+1 − 19^ ƒE[�7R�;,\��7R�;X                                            (27) 

 

For simplification, four new variables are introduced, called the continuity equation coefficients. 

Comparing with 
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V[��7�Z;,\�7�Z;= V[��7�Z;,\��7�Z; + V[�7�Z;,\��7�Z; − V[7�Z;,\�7�Z;+ 2Δη t(	Acn)ƒE[��7�Z;,\�7�Z; + (Bcn)ƒE[��7�Z;,\��7�Z;+ (	Ccn)ƒE	[�7�Z;,\�7�Z; + (Dcn)ƒE[�7�Z;,\��7�Z;v 
 

we have; 

 Aw\ = − �nβ[�� − �ZYJ ξ[�� − �nYL η\��(β[�� − 1) Bw\ = − �n β[�� − �ZYJ ξ[�� + �nYL η\��(β[�� − 1)                                                                   (28) Cw\ = − �n β[�� + �ZYJ ξ[�� − �nYL η\��(β[�� − 1)  
Dw\ = −14β[�� + 12Δξ ξ[�� + 14Δηη\��(β[�� − 1) 
 

From the boundary condition equation V� = 0 when n = 1, VK is seen to be algebraically related 

to V as follows: 

                                     	VK = LZ (β − 1)ƒE + V                                                                             (29) 

 

Matrix Laboratory (MATLAB) or VISUAL BASIC programs can be used to solve the boundary 

layer equation in order to obtain the horizontal and vertical velocity distribution. The calculation 

proceeds iteratively until all values for ƒE and x are been obtained for the entire computational 

domain. The effects of various parameters of the flow such as velocity ratio and viscosity 

variation parameter can then be investigated. Stability analysis can also be considered. 

Applications of these results can include: high speed flows, pollutants emission flow, conveyors 

for materials handlings, aerodynamics (airplanes, rockets, projectiles), hydrodynamics (ships, 

submarines, torpedoes), transportation (automobiles, trucks, cycles), wind engineering 

(buildings, bridges, water towers), and ocean engineering (buoys, breakwaters, cables). 

 

3. Conclusions 

Fundamental theory of velocity and thermal boundary layer over a flat plate has been presented. 

The methodology for super-imposition of finite-difference based Crank-Nicolson method over a 

staggered grid finite volume method provides the common stencil for the solution of velocity and 

temperature distribution across the solid-fluid interface. Iterative computation of these 

distributions across the entire domain is anticipated to introduce the required control of heat 

transfer toward the design of automobiles with efficient cabin comfort. 
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