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Abstract: In early works done by authors, performance analysis of refrigeration systems 

such as power input, refrigeration load and coefficient of performance (COP) was 

investigated. In this article a new function called "Coefficient of Performance Exergy” or 

COPE has been introduced. Two objective functions of coefficient of performance exergy 

and exergy destruction are optimized simultaneously using the multi-objective optimization 

algorithm NSGAII. COPE has been maximized and exergy destruction has been minimized 

in order to get the best performance. Decision making has been done by means of two 

methods of LINAMP and TOPSIS. Finally an error analysis done for optimized values 

shows that LINAMP method is preferable against TOPSIS method.  
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1. Introduction 

Numerous researches performed in finite-time thermodynamics where the coefficient of performance 

(COP) is selected as the objective function in the optimization analysis [1 – 4]. Performance 

optimization of the heat engines had been studied since 1996 by selection of the power density as the 

objective function [5 – 7] which is able to optimize the cycle performance containing the effects of the 

engine size. Similar study accomplished for the Ericsson [8] and Stirling [9] refrigeration cycles in 
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which both the internal and external losses were neglected and the cooling load density was utilized as 

the optimization objective. Recently, significant strides have been made in the research and 

development for Brayton refrigeration cycles [10]. 

Numerous studies have been done since the 1970s for refrigerators to classify the performance 

restrictions and to optimize the thermodynamic cycles [11–22]. Most of the above mentioned work 

have chosen the input power, cooling load, exergy output rate, COP and entropy generation rate as the 

optimization objectives. An ecological objective function for finite-time Carnot heat engines was first 

introduced by Angulo-Brown et al. [23] as LE P T S  in which LT  stands for the of the cold heat 

source temperature, P is the output power and σ represents the rate of entropy generation. Yan [24] 

improved this objective to 0E P T S  where 0T  is the ambient temperature. 

Solving multi-objective optimization problems is too difficult because the resulting different objective 

functions should be satisfied simultaneously while they may even conflict. Evolutionary algorithms 

(EA) were the first techniques developed and utilized during the mid-eighties which enabled solving 

problems of such generic class stochastically [25]. When such a method is to be used, a multi-objective 

problem gives rise to an assortment of optimum answers, each of the objective functions is satisfied  at 

an acceptable level where the other solutions are not being dominated [26]. In general, multi-objective 

optimization show a countless assortment of possible answers called Pareto frontier, whose assessed 

vectors in the objective function space symbolize the greatest possible trade-offs. Nowadays, multi-

objective optimization of various systems in energy and thermodynamics engineering is generating 

interest in many researchers throughout the world [27-34]. 

In the current work  a irreversible refrigerators were optimized using evolutionaryalgorithm while coefficient of 

performance of exergy , the rate of exergy destruction are presumed as objectives of the optimization, while 

thermal operating variables of refrigerator including the Internal irreversibility parameter ( ) , the internal 

conductance of the refrigerator  ( C ) , working fluid in the cycle works at temperature LCT  and heat transfer 

surface area ratio ( f ) are considered as decision variables. 

2. Model and Basic Assumption 

Figure (1) illustrates the Temperature-Entropy ( T S ) schematics diagram for an irreversible 

refrigerator. The temperatures of the heat source and heat sink where the cycle operates are represented 

by TH and TL, correspondingly. The working fluid throughout the cycle operates at temperature LCT  and 

HCT , correspondingly. The temperature gradient ( HC HT T ) throughout the high-temperature heat 

exchanger creates HCQ  while LCQ  is made because to the driving force of ( L LCT T  ). LQ denotes 
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the net heat transfer rate from the heat sink, viz., the cooling load (R) and HQ  stands for the net heat 

transfer rate to the heat source. The correlation between HT , HCT ,  LCT , LT   should satisfy the below 

expression 

HC H L LCT T T T  (1) 

 

Figure 2 depicts a model used in the current paper for a universal irreversible refrigerator and its 

surrounds. 

 

 
Figure 1. T S diagram for the generalized refrigerator model.  
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Figure 2. The model of the generalized refrigerator and its surroundings.  

 

 

The model is based on some assumptions as follows: 

(1) The steady state fluid flow is assumed for the working fluid and the cycle comprises of four 

irreversible processes including two adiabatic and two isothermal. 

(2) The low-and high- temperature heat exchangers have finite heat transfer surface areas denoted by 

F2 and F1, respectively while the overall heat transfer surface area (F) for the two aforementioned heat 

exchangers is presumed to be consistent: 

1 2F F F  (2) 

 

(3) Due to the existence of heat leakage (q) from the heat sink to the heat source, it is obtained that: 

 

H HCQ Q q  (3) 

L LCQ R Q q  (4) 

H Lq C(T T )  (5) 

 

(4) The irreversibilities throughout the cycle take place owing to: (i) thermal resistivity between the 

working fluid and the heat resources. (ii) heat loss among the heat resources and (iii) various 

parameters such as instability, friction and non-equilibrium accomplishments in the bounds of the 
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refrigerator. Consequently, more power is required as input associated to an endoreversible refrigerator. 

The heat rejection rate to the heat sink ( HCQ ) of a universal irreversible refrigerator is much more than 

an endoreversible one ( HCQ ).These irreversibilities can be scaled by introducing a constant factor,  , 

which characterizes the extra internal varied irreversibility influence: 

1HC

HC

Q
Q

 
(6) 

Compared to the endoreversible [35] and irreversible [36–39] refrigerator approaches, the developed 

model is more general and reliable. If 0q  and 1  , the approach would be summary to the 

endoreversible refrigerator [35] while for 0q and 1 , the approach is summary to an irreversible 

refrigerator with heat leak losses and heat resistance [36]. For 0q and 1 , the approach is 

summary to the irreversible refrigerator with internal irreversibilities and heat resistance [36–39]. 

For an irreversible refrigerator, the second law of thermodynamics needs that: 

HC HC

LC LC

Q T
Q T

 
(7) 

Merging formulas (6) and (7) provides: 

HC HC

LC LC

Q T( )
Q T

 
(8) 

Presume that the heat transfers among the refrigerator and its surrounds obey Newton’s linear law: 

1HC HC HQ F (T T )  (9) 

2LC L LCQ F (T T )  (10) 

Moreover, following formula defines a heat transfer surface area ratio (f): 

1

2

Ff
F

 
(11) 

According to the first law of thermodynamics, The power input (P) to the refrigerator can be 

determined via following equation: 

HC LC H L HP Q Q Q Q Q R  (12) 

The coefficient of performance (COP) of the refrigerator is: 

LQ RCOP
P P

 
(13) 

 

Equations (7)–(13) provide: 
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1HC

LC

RCOP T( R q )( )
T

 
(14) 

H L

H L

Q QS
T T

 
(15) 

 

Merging Equations (8)–(11) gives: 

HC HC HC H

LC L LC

Q T f (T T )
R q T (T T )

 
(16) 

which then yields: 

HHC

LC LC L

fT ( )T
fT ( )T T

 

(17) 

Merging Equations (2) and (9)–(11) provides: 

1
LC L

( R q )( f )T T
F

 
(18) 

Replacing formula (18) into formulas (16) and (17), then following equations can be obtained: 

1

HHC

LC L L

fT ( )T
( R q )( f )T f( )(T ) T

F

 

(19) 

1

H
HC

L

T ( R q )Q f( )
T ( R q )( f )

fF

 
(20) 

To derive the entropy generation rate (S) and coefficient of performance (COP) of the generalized 

irreversible refrigerator cycle, we substitute the Equations (19) and (20) into Equations (14) and (15) as 

following as:  

1

L H

L

( R q ) R qS f T T( )
T ( R q )( f )

fF

 
(21) 
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1

1 1

H

L

TRCOP fR q ( )
[T ( R q )( f ) ]

fF

 

(22) 

From exergy analysis point of view, the objective function of ecological optimization, suggested by 

Angulo-Brown [23] and improved by Yan [24], can be obtain via following equation:  

0E P T S  (23) 

In which T0 denotes the temperature of environment. 

 

The ecological coefficient of performance (ECOP) was proposed by Ust and colleagues [22], as the 

proportion of power output to the loss rate of availability, i.e., 

0

PECOP
T S

 
(24) 

From exergy analysis point of view, Chen and colleagues [40] present an ecological optimization 

objective for refrigerator cycles as following as: 

0I T S  (25) 

 

0 0
0

1
1 1 1

L H

T TE R ( ) ( )( ) T S
T COP T

 
(26) 

The coefficient of performance of exergy (COPE) is proposed as the proportion of exergy loss rate 

(entropy generation rate) and the exergy output rate, consequently, COPE is a dimensionless ecological 

function and it can be written as following equation as: 

0 0

0

1
1 1 1

L H

T TR ( ) ( )( )
T COP T

COPE
T S

 

(27) 

3. Multi-objective optimization with evolutionary algorithms 

3.1. Optimization via EA 
Using genetic algorithm (GA) which is classified under evolutionary algorithms, we obtained Pareto frontier. 

John Holland was the first who suggested and developed genetics algorithm in the 1960s which integrate 

natural adaptation approach with computer algorithms and numerical optimization techniques [25.26].A 

computer simulation is used for optimization problem and generation of acceptable solution where a population 

of abstract demonstrations named chromosomes of nominee answers named individuals evolves. The random 
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population of generated individuals is the start point of the evolution and the generation process repeats. In each 

step, the evaluation of every individual fitness is performed and multiple individuals are selected randomly 

from the current population (according to their fitness).Then, they modified (feasibly randomly mutated and 

recombined) and finally a new population is generated. Each generated population is needed to be used for the 

next step of the algorithm. Algorithm dismisses when either the number of generations reaches its maximum, or 

the population reaches its satisfactory fitness level. In the second case, an acceptable solution cannot be 

achieved. The term chromosome refers to a candidate solution of a genetics algorithm problem, and the fitness 

function gives the evolutionary feasibility of each chromosome. The technique is an effective way to solve 

nonlinear problems [25,26]. In addition, the complexity of classical techniques can be reduced by multi-

objective evolutionary algorithms (MOEAs) which have recently been advanced by using many different tests 

on complex engineering and mathematical issues [25,26]. Schematics of the present study MOEA is showed in 

Fig. 3 [28-33]. Instead of using binary codes, the actual values of decision parameters are considered. 

 

Figure.3.Scheme for the multi-objective evolutionary algorithm used in the present study [28-33]. 

 

3.2. Objective functions, decision parameters and limitations 

Two important objective functions for optimization are the exergy destruction (should be minimized), the 

coefficient of performance of exergy (should be maximized) represented by Eq.(24) and Eq.(26), 

correspondingly.   

Throughout this research, four decision parameters are presumed as following as: 

 : Internal irreversibility parameter 

C : The internal conductance of the refrigerator   

f : The heat transfer surface area ratio  
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LCT : Working fluid temperature (K) 

The objective functions in regard to below limitations are unraveled: 

0.01 0.03( )kWC K   
(28) 

1 1.3   (29) 

0 5 4. f
 

(30) 

240 255LCT
 

(31) 

3.3. Decision-making in the multi-objective optimization 

After optimization process with multi variables and objectives, selecting an ultimate optimum outcome 

from the results gained by evolutionary approach has a great importance. Thanks to this fact, numerous 

methods that known as decision making techniques can be execute to determine desire optimal 

variables from the frontier of Pareto that is previously gained. Throughout this research, two robust, 

high performance and well-known decision maker techniques including LINMAP and TOPSIS 

approaches are utilized. Ultimate optimum outcomes were determined on the basis of the expert 

knowledge and indexes through results that proposed with the aim of decision maker approaches. 

Extensive description of two decision makers can be found in following references [28-33]. 

4. Result an discussion 

The coefficient of performance of exergy (COPE) is maximized simultaneously and the exergy 

destruction ( 0T S ) is minimized concurrently employing the multi-objective optimizing approach which 

operates according to the NSGA-II method. 

By the way, optimization is accomplished via objective functions that are formulated by Eqs. (25) and 

(27) limitations which are represented via Eqs. (28)-(31). 

With the intention of have reliability with earlier publications, descriptions of the Irreversible 

refrigerator cycle are presumed as following as [41],  

300HT K , 260LT K , 0 290T K  

Pareto optimal frontier exhibited in Fig.4 Also, obtained optimum solutions of LINMAP and TOPSIS 

methods exhibited in Fig.4. From Fig.4 it can be seen that optimal solution of COPE  varied of 3.3 to 

3.5 and optimal solution of 
0T S varied of 0.17 to 0.24.  
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Figure.4. Pareto frontier (Pareto optimal solutions) for 0T S  versus COPE using NSGA-II. 

Figs 5 to 8 are exhibited the distribution of different values of decision parameter in their permissible 

rang for the optimum design points on the Pareto front. It can be seen from Fig.5 that distribution of C  

in 0.01C  was marked by blue line and C obtained lower value. From Fig.6 it can be seen that 

distribution of  in 1was marked by blue line and  obtained lower value. From Fig.7 it can be 

seen that distribution of various values of f  which the range of 2.48 to 4 was further. It can be seen 

from Fig.8 that distribution of LCT  in 255LCT  K was marked by blue line and LCT obtained higher 

value. 
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Figure.5.The distribution of C  for the optimal points on Pareto front. 
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Figure.6.The distribution of  for the optimal points on Pareto front. 
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Figure.7.The distribution of f  for the optimal points on Pareto front. 
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Figure.8.The distribution of  for the optimal points on Pareto front. 

Table 1 report optimum solutions gained throughout this research employing two decision making 

approaches. 

Table 1: Decision making of multi-objective optimal solutions. 

Decision Making Method 

  

Decision variables Objective functions 
C   f  LCT  

0T S  COPE  

TOPSIS 0.01 1.000013 3.90 255 0.17272 3.3142 

LINMAP 0.01 1.000013 3.85 255 0.17408 3.3232 

4.1. Error Analysis: 

For error analysis, the mean absolute percentage error (MAPE) is employed. For this goal, 30 runs of 

each method are accomplished to provide ultimate outcome. First and second row of Table 2 shows 

maximum absolute percentage error (MAAE) and (MAPE) respectively. 

Table2: Error analysis based on the mean absolute percent error (MAPE) method. 

Decision Making Method TOPSIS LINMAP 
Objectives COPE  0T S  COPE  0T S  

Max Error % 4.13 14.86 3.88 15.04 

Average Error % 1.74 5.43 1.64 5.41 

 

5. Conclusions 
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In this study, thermodynamic analysis has been applied to determine the exergy destruction and the 

coefficient of performance of exergy ( COPE ) of the refrigerator. The exergy destruction and the 

COPE  of the refrigerator are presumed concurrently for multi-objective optimization the Internal 

irreversibility parameter ( ), the internal conductance of the refrigerator (C ), heat transfer surface area 

ratio ( f ) and working fluid in the cycle operates at temperature LCT  are presumed as design variables. 

Multi objective evolutionary approach is presumed according to the NSGA-II method and the Pareto 

optimal frontier throughout objectives space is acquired. An ultimate optimum answer is nominated 

from answers of the Pareto frontier employing two decision making approaches comprising TOPSIS 

and LINMAP techniques. 
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