The 9th International Electronic Conference on Water Sciences

11–14 November 2025 | Online

Laccase-functionalized nanoparticles for endocrine disruptors oxidation: from synthesis to characterization

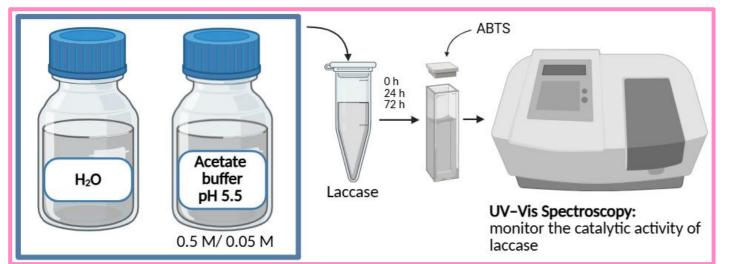
Mafalda Faria-Henriques ¹, Jéssica Lopes-Nunes ^{1,2}, Carla Cruz ^{1,2}

¹RISE-Health, Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama 6201-001 Covilhã, Portugal Departamento de Química, Universidade da Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal

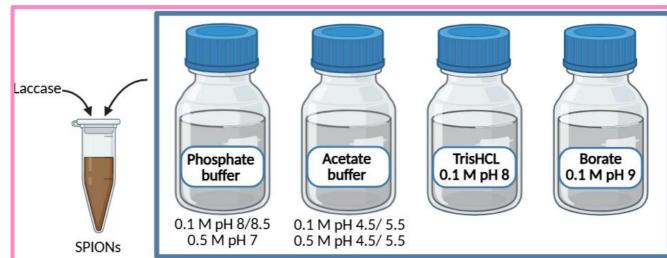
INTRODUCTION & AIM

Endocrine-disrupting compounds (e.g. bisphenol A) represent a major environmental and public health concern, as they persist in aquatic environments and interfere with the hormonal system even at very low concentrations (1, 2).

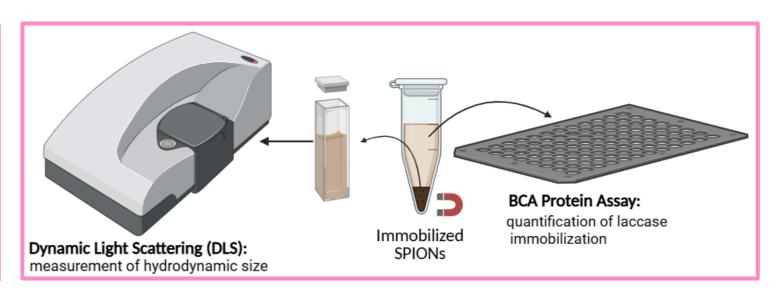
Conventional wastewater treatment methods are ineffective in removing these compounds, highlighting the need for more efficient remediation strategies (3).


Laccase-based degradation has emerged as a promising approach for the breakdown of these pollutants. However, its practical application remains limited due to the enzyme's low stability and challenges in its recovery and reuse (4).

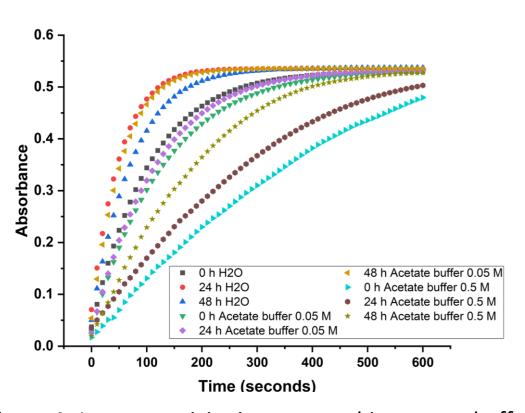
Enzyme's immobilization on magnetic iron oxide nanoparticles (SPIONs) enhances their stability, enables easy recovery and reuse through magnetic separation, and improves overall efficiency and sustainability in water treatment processes (4).


AIM: To develop SPIONs functionalized with laccase as an efficient and sustainable system for the removal of endocrine disruptors

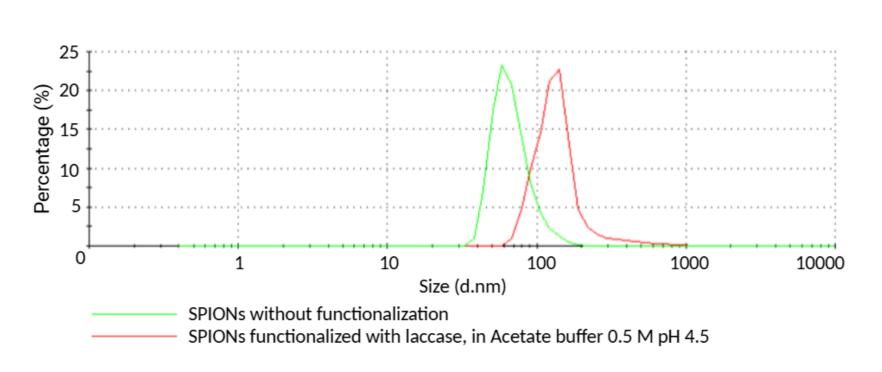
METHODS


Laccase activity

Conditions for laccase immobilization



Characterization of the obtained SPIONs


RESULTS

Time-dependent laccase activity

Figure 1: Laccase activity in water and in acetate buffer (0.05 M or 0.5 M, pH 5.5) after 0, 24, and 48 hours, determined using ABTS as the chromogenic substrate.

Nanoparticles hydrodynamic size

Figure 2: Hydrodynamic size of SPIONs without (green) or with laccase functionalization (red). The obtained sizes were at 58.77 nm and 141.8 nm, for SPIONS with or without laccase functionalization, respectively.

Determination of laccase immobilization

Table 1: Results, in percentage, of laccase enzyme immobilization in SPIONs, using different buffer solutions.

Buffer	рН	Concentration (M)	Immobilization (%)
Acetate	4.5	0.1	20-31
		0.5	29-46
	5.5	0.1	0
		0.5	2-23
Tris-HCl	8	0.1	13-16
Borate	9	0.1	0
Phosphate	7/8/8.5	0,1/ 0.5	0

CONCLUSIONS

- ✓ The best buffer for preserving laccase activity was acetate buffer at 0.5
 M.
- ✓ The acetate buffer 0.5 M, pH 4.5 was the best option for the laccase immobilization on SPIONs
- ✓ Regarding the size of SPIONs, there was a noticeable increase in the hydrodynamic size upon laccase immobilization.

Acknowledgements: Jéssica Lopes-Nunes acknowledges a fellowship Grant (AquaClean_MSc1) from the project AquaClean – "Monitorização e remoção de disruptores endócrinos em águas superficiais" (ref. PL24-00059).

Carla Cruz acknowledges the project AquaClean – "Monitorização e remoção de disruptores endócrinos em águas superficiais" (ref. PL24-00059), funded by Programa Promove from "la Caixa" Foundation, Projetos-Piloto Inovadores, in partnership with FCT.

FUTURE WORK

Future research will focus on assessing the efficiency of nanoparticles in removing endocrine-disrupting compounds. The findings will contribute for the development of sustainable water treatment technologies that integrate enzymatic degradation with nanomaterial-based recovery systems.

REFERENCES

- (1) X. Li, et al, Ecotoxicol. Environ. Saf. 278 (2024) 116420. https://doi.org/10.1016/J.ECOENV.2024.116420.
- (2) T.T. Schug, et al,, J. Steroid Biochem. Mol. Biol. 127 (2011) 204. https://doi.org/10.1016/J.JSBMB.2011.08.007.
- (3) J. Matesun, et al Ecotoxicol. Environ. Saf. 281 (2024) 116610. https://doi.org/10.1016/J.ECOENV.2024.116610.
- (4) M.T. Moreira, et al, Appl. Sci. 2017, Vol. 7, Page 851. 7 (2017) 851 https://doi.org/10.3390/APP7080851.

