The 9th International Electronic Conference on Water Sciences

11-14 November 2025 | Online

Evaluating Sentinel-1 DEMs for Geospatial Applications: A Benchmark Study

TNQ
Drought Hub

Tropwater

Laleh Jafari¹, Ben Jarihani¹, Jack Koci², Stephanie Duce¹, and Ioan Sanislav¹

1 College of Science and Engineering, James Cook University, Queensland, Australia
2 TropWATER, James Cook University, Queensland, Australia

INTRODUCTION & AIM

- The objective of this study is to generate a local Sentinel-1 DEM and assess its accuracy vs global and LiDAR datasets.
- DEMs are fundamental for hydrologic, geomorphic, and environmental analysis.
- Common datasets: SRTM (~30 m), Copernicus GLO-30 (~30 m), Sentinel-1 InSAR (custom).

RESULTS & DISCUSSION Total Service of the Control of the Control

Figure 2. Sentinel-1 InSAR DEM

Figure 3. SRTM DEM

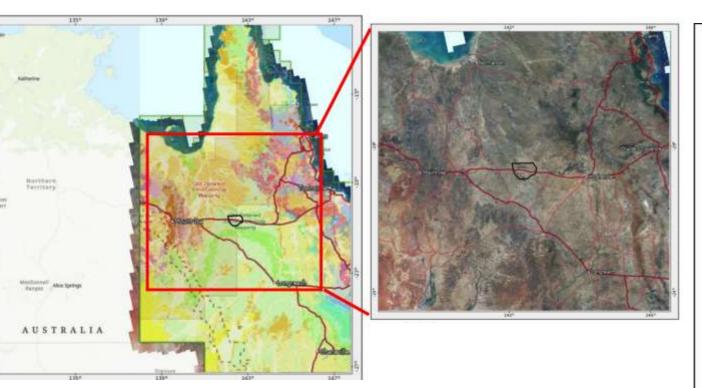


Figure 1 :Study Area, Maxwelton, Queenslans, Australia

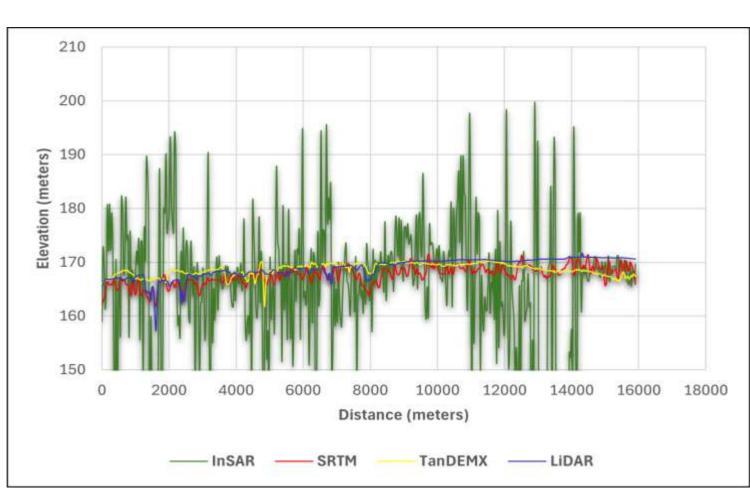


Figure 4.Elevation cross-section comparison of LiDAR, TanDEM-X, SRTM, and Sentinel-1 InSAR DEMs along Profile 1.

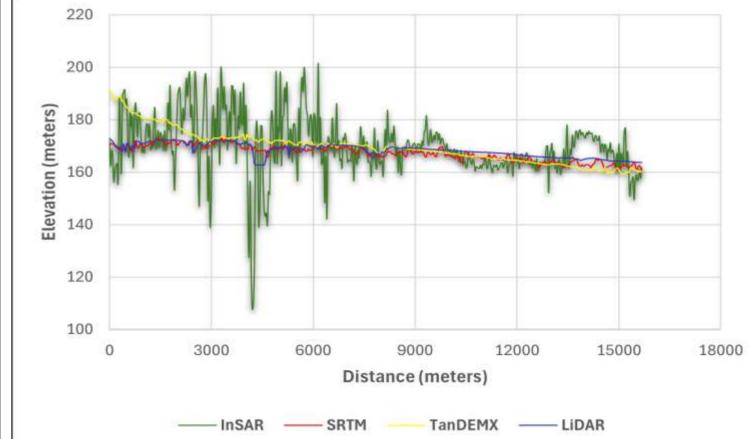


Figure 5. Elevation cross-section comparison of LiDAR, TanDEM-X, SRTM, and Sentinel-1 InSAR DEMs along Profile 2.

METHOD

- Sentinel-1 SAR pairs images processed in SNAP for interferometric DEM generation.
- Copernicus GLO-30 and SRTM DEMs were downloaded from DLR and USGS websites.
- LiDAR DEM used for accuracy assessment.
- Accuracy metrics: RMSE, MAE, R² correlation.
- Qualitative checks: visual comparison of elevation profiles.

The LiDAR data show the most detailed and consistent elevation profiles. TanDEM-X and SRTM closely follow LiDAR but smooth out fine topographic features. InSAR shows the largest deviations, partly due to real post-2019 flood changes like sediment deposition or erosion. Overall patterns match the RMSE results, confirming higher errors for radar DEMs but also revealing the impact of acquisition timing.

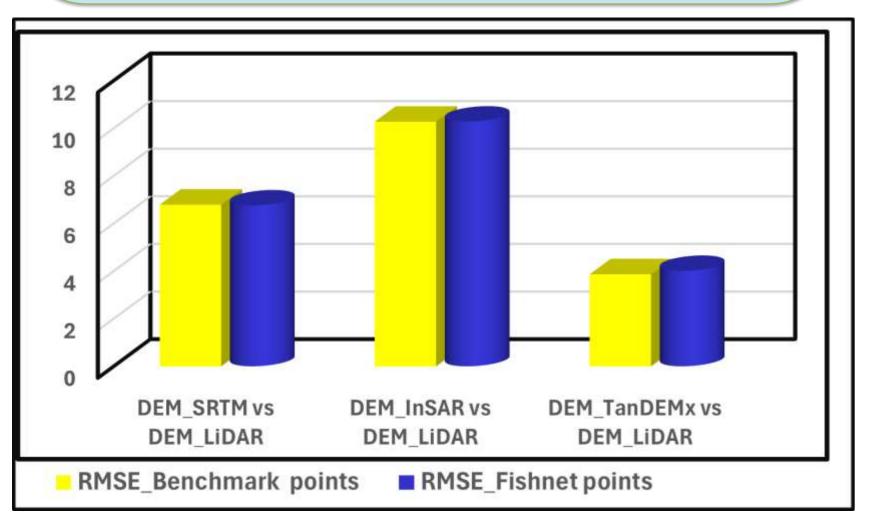


Figure 6.Comparison of DEM accuracy (RMSE) against LiDAR reference benchmark and Fisher-based points sampling. DEM_TanDEM-X showed the highest accuracy (RMSE ≈ 4 m) and strong agreement with DEM_LiDAR, while DEM_SRTM and DEM_InSAR had much larger errors (≈ 6 –11 m). RMSE consistency across datasets confirms the reliability of the results.

CONCLUSION

All DEMs reproduce the overall longitudinal pattern well, but their precision differs. LiDAR remains the most accurate reference, with TanDEM-X and SRTM offering moderate, consistently smoothed representations. The larger fluctuations in the InSAR DEM align with its higher RMSE, but could partly result from actual post-flood topographic modifications and changes in vegetations. This suggests that dataset acquisition timing can meaningfully influence DEM-profile discrepancies.

FUTURE WORK / REFERENCES

Fisher, P. F. and N. J. Tate (2006). "Causes and consequences of error in digital elevation models." <u>Progress in physical Geography</u> **30**(4): 467-489. Gao, J. (1997). "Resolution and accuracy of terrain representation by grid DEMs at a micro-scale." <u>International Journal of Geographical Information Science</u> **11**(2): 199-212.

Reuter, H. I., T. Hengl, P. Gessler and P. Soille (2009). "Preparation of DEMs for geomorphometric analysis." <u>Developments in soil science</u> **33**: 87-

120.
Tadono, T., H. Ishida, F. Oda, S. Naito, K. Minakawa and H. Iwamoto (2014). "Precise global DEM generation by ALOS PRISM." <u>ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences</u> **2**: 71-76.

Uuemaa, E., S. Ahi, B. Montibeller, M. Muru and A. Kmoch (2020). "Vertical accuracy of freely available global digital elevation models (ASTER, AW3D30, MERIT, TanDEM-X, SRTM, and NASADEM)." Remote Sensing 12(21): 3482.

Copernicus, 2023; NASA SRTM docs, 2021