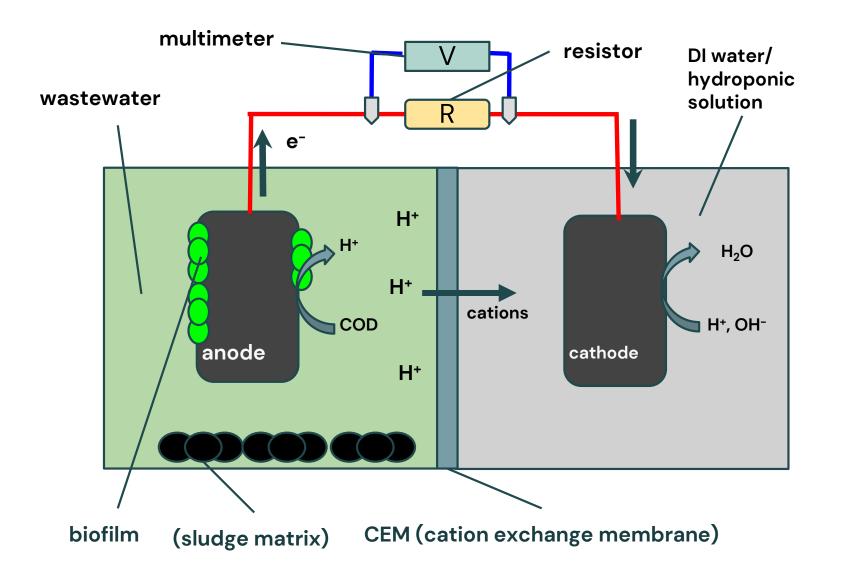
Energy-Positive Wastewater Treatment and Nutrient Recovery in a Combined Hydroponics and Microbial Electrochemical System

Nachiket Aparajithan Magesh¹, Khin Thandar Tun^{2,3}, Veera Gnaneswar Gude^{1,2,3}

¹Purdue School of Sustainability Eng. and Environmental Eng., ²Purdue Northwest Dept. of Mechanical and Civil Eng., ³Purdue Northwest Water Institute

Introduction and Motivation

Background


- Untreated wastewater effluents can raise nutrient and biomass concentrations in water bodies, causing serious harm to aquatic environments.
- However, conventional municipal wastewater treatment is energy-intensive (2% of total energy consumed in the US).
- Municipal wastewater contains up to 10x the energy needed for its own treatment.
- Hydroponics, a soil-less method of crop cultivation, can aid in and benefit from wastewater treatment.
- This study aims to harness the untapped chemical energy in wastewater using microbial electrochemical cells (MEC) while boosting hydroponic crop growth.

Typical Wastewater **Pollutants:**

N: NH₃/NH₄⁺, NO₃⁻, NO₂-, Organic **P:** PO_4^{3-} , $(PO_3^{-1})_n$, Organic **Oxygen-demanding**

chemicals Suspended solids **Heavy metals**

Microbial Electrochemical Cell Mechanism

- Anode: electroactive bacteria treat pollutants in wastewater (oxidation)
- Membrane: facilitates exchange of ions
- Wires + resistor: conducts electrons (electrical current)
- Cathode: completes the circuit (reduction)

Anion Exchange Membrane (AEM) Transports negatively charged ions

Cation Exchange Membrane (CEM) Transports positively charged ions

Proton Exchange Membrane (PEM) Transports only H+ ions

Methods Air cathode configuration Wastewater (Preliminary) Plugs (promote anaerobicity) Acrylic bioreactor Anode w/ biofilm Cathode Sludge matrix (secondary) 1000 Ω resistor, titanium wire Integrated configuration Light source Sampling Multimeter Lactuca sativa valve (lettuce)

Results **Polarization Curves - Air Cathode** 0.3 0.35 0.25 0.2 ---- Power density 0.15 0.1 Current density (mA/m²) **Polarization Curves - Integrated** 0.45 0.4 0.35 0.3 Power density 0.25 0.2 0.15 20 100 Current density (mA/m²)

System Performance

COD Removal Efficiency

- Air cathode: 61%
- Integrated: 57%

Total N Removal Efficiency

- Air cathode: 54% • Integrated: 47%
- Air cathode: -15% • Integrated: 13%

PO₄3- Removal

Efficiency

Coulombic Efficiency (CE)

Air cathode: 3% ● Integrated: 12%

• Air cathode: 0.10-0.15 V

• Integrated: 0.16 V

Peak Voltage

Plant Growth (% change, wet wt.) • Integrated: 25%

Discussion

- COD and total nitrogen removal rates
- Integrated system lower, possibly due to reduced concentration gradient and subsequently, inhibited proton exchange
- Higher initial COD concentration correlated with higher removal
- PO₄³⁻ removal rate
- Air cathode: negative removal, likely due to leaching from sludge
- Integrated: positive, likely due to osmosis from anode to cathode and improved assimilation rate by anodic biomass
- Plant growth in integrated design: significant decrease in cathodic total nitrogen and total phosphate suggests plant utilization of nutrients
- Power production: comparable potential despite using cheaper, environmentally-friendly materials

Future Work

- Bipolar membrane (BPM) experiments
- Kinetic analysis of COD removal
- Long-term analysis of integrated system on lettuce growth. treatment times, and dominant nutrient transport pathways

Acknowledgments

- I thank the USDA for funding this research through the REEU program.
- I thank my supervisor, Dr. Veera Gnaneswar Gude, and graduate mentor, Khin Thandar Tun, for their support for my research endeavors.

References

- 1. Gude, V. G. (2016). Wastewater treatment in microbial fuel cells an overview. *Journal of Cleaner* Production, 122, 287–307. https://doi.org/10.1016/j.jclepro.2016.02.022
- 2. Sato, C., Apollon, W., Luna-Maldonado, A. I., Paucar, N. E., Hibbert, M., & Dudgeon, J. (2023). Integrating Microbial Fuel Cell and Hydroponic Technologies Using a Ceramic Membrane Separator to Develop an Energy-Water-Food Supply System. Membranes, 13(9), 803. https://doi.org/10.3390/membranes13090803

Contact: nmagesh@purdue.edu