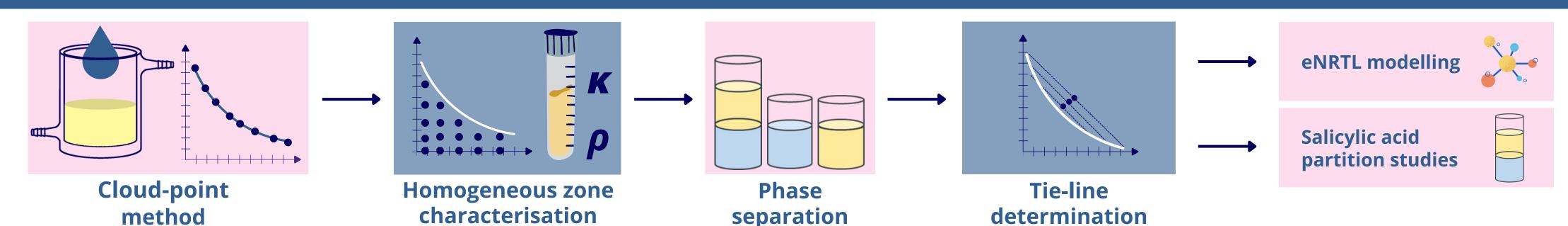


The 9th International Electronic Conference on Water Sciences

11-14 November 2025 | Online

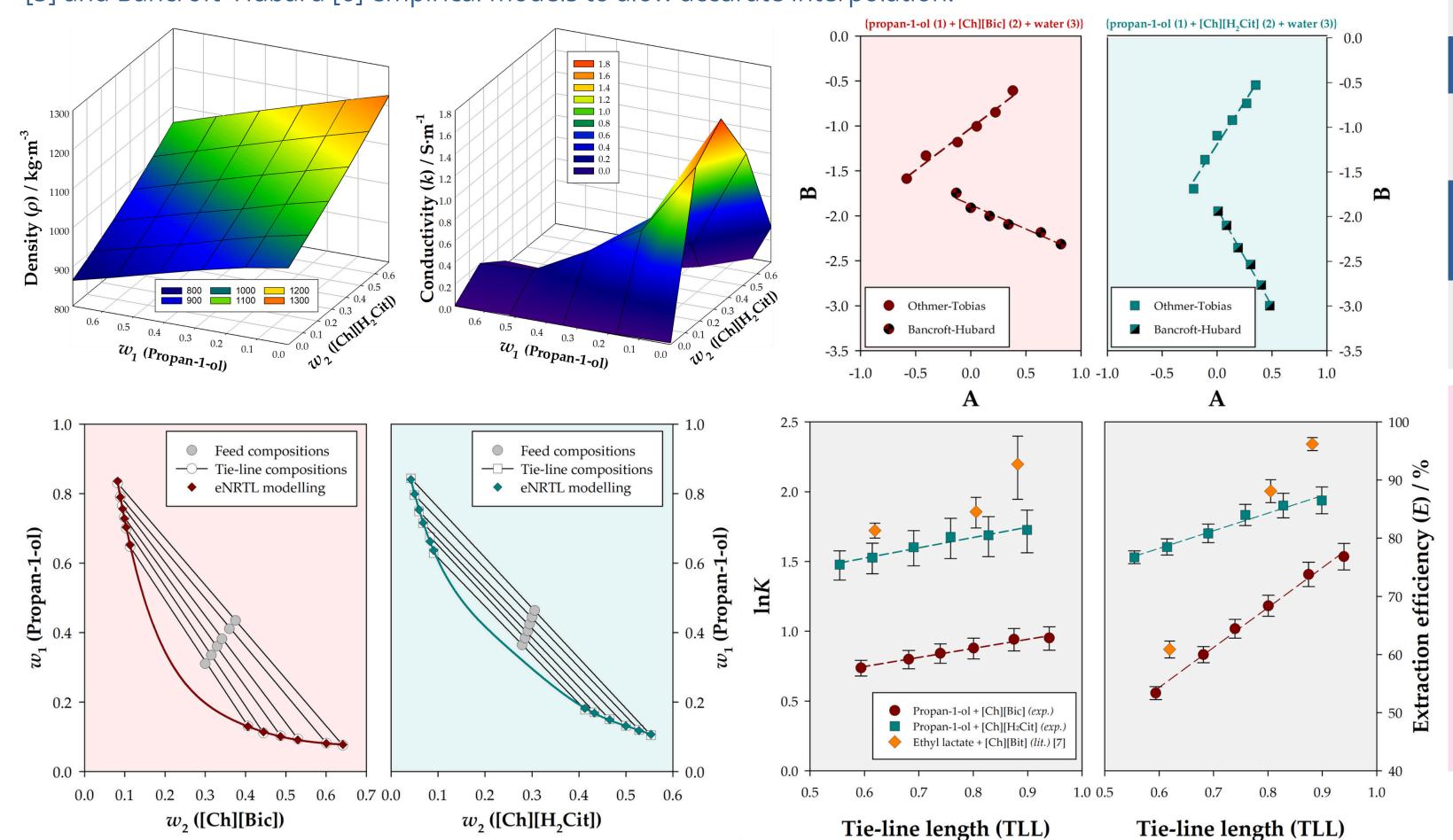
Aqueous Two-Phase Extraction using Choline Salts: A Green Strategy for Tackling Pharmaceutical Pollution in Water

Eduardo Sousa¹, Pedro Velho¹, Eugénia A. Macedo¹


¹LSRE-LCM, ALiCE, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

INTRODUCTION

Aqueous Two-Phase Systems (ATPSs) based on choline salts represent a promising and environmentally friendly alternative to conventional liquid-liquid extraction methods due to their high water content, biocompatibility, and non-toxic nature [1-2]. These characteristics make them particularly suitable for the recovery of active pharmaceutical ingredients (APIs), such as antibiotics and antipyretics, from contaminated water streams [3].


In this work, the liquid-liquid equilibria (LLE) of ATPSs composed of propan-1-ol, choline dihydrogen citrate or choline bicarbonate, and water were determined at 298.15 K and 0.1 MPa. Solubility curves were estimated using the cloud-point method, while tie-line compositions were established using thirddegree polynomial correlations of electrical conductivity and liquid density data. The experimental data were successfully described using the electrolyte-Non-Random Two-Liquid (eNRTL) thermodynamic model [4]. Partition studies were also performed, by using salicylic acid to simulate an API contaminated stream, obtaining promising performance indicators.

METHODOLOGY

RESULTS AND DISCUSSION

As expected, liquid density increased with higher concentrations of salt and solvent. A similar trend was observed for electrical conductivity up to a mass fraction of 0.29 in salt, beyond which ionic crowding effects became significant. Regarding the tie-line compositions, the experimental data were correlated using the Othmer-Tobias [5] and Bancroft-Hubard [6] empirical models to alow accurate interpolation.

Othmer-Tobias

$$A = \log\left(\frac{1 - w_{2,\text{II}}}{w_{2,\text{II}}}\right), B = \log\left(\frac{1 - w_{1,\text{I}}}{w_{1,\text{I}}}\right)$$

Bancroft-Hubard

$$A = \log\left(\frac{w_{2,\text{II}}}{w_{3,\text{II}}}\right)$$
, $B = \log\left(\frac{w_{2,\text{I}}}{w_{1,\text{I}}}\right)$

Extraction Efficiency and Partition Coefficient

$$E = \frac{m^{\text{top}}}{m^{\text{feed}}} \cdot 100 \qquad K = \frac{C^{\text{top}}}{C^{\text{bot}}}$$

CONCLUSIONS

- New ATPSs containing choline and bicarbonate choline dihydrogen citrate were successfully determined.
- Both ATPSs exhibited promising performance indicators for API extraction, achieving K values of 5.6 ± 0.9 and **E** values of 87 ± 3 %.

REFERENCES

ACKNOWLEDGMENTS

- [1] P. Velho; E. Sousa; J.T. Coelho; D. Moreira; E.A. Macedo *Ind. Eng. Chem. Res.*, 64, 9821-9834, 2025.

- [5] D. Othmer; P. Tobias Ind. Eng. Chem. Res., 34, 693-696, 1942.
- [6] W.D. Bancroft; S.S. Hubard *J. Am. Chem. Soc.*, 64, 347–353, 1942. [7] L.R. Barroca; P. Velho; E.A. Macedo *Fluid Phase Equilib.*, 586, 114193, 2024.
- I.P./MCTES through national funds: LSRE-LCM, UID/50020/2025; and ALiCE, [2] L.R. Barroca; P. Velho; E.A. Macedo *J. Chem. Eng. Data*, 69, 215–226, 2024. LA/P/0045/2020 (DOI: 10.54499/LA/P/0045/2020). This work was also supported [3] P. Velho; C. Lopes; E.A. Macedo *Ind. Eng. Chem. Res.*, 63, 10427–10435, 2024. by FCT - Fundação para a Ciência e a Tecnologia, I.P. by project 2021.06626.BD [4] C. Chen; Y. Song *AIChE J.*, 50, 1928-1941, 2004. (DOI: 10.54499/2021.06626.BD).

This work was financially supported by Fundação para a Ciência e a Tecnologia,

