

Tertiary Treatment of Wine Distillery Wastewater at Near-Neutral pH using the **Chelate-modified Fenton Process**

João P. Lemos¹, Anabela Nogueira², Carmen S.D. Rodrigues¹, Luis M. Madeira¹

¹LEPABE, ALiCE, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal. ²Adventech – Advanced Environmental Technologies, Lda. Rua de Fundões 151, 3700-121 São João da Madeira, Portugal.

INTRODUCTION & AIM

- Wine distilleries produce high amounts of strongly polluted wastewater (WDW), wasting a valuable hydrological resource in drought-prone climates.
- Economically motivated incorporation of grape lees and pomace increase recalcitrancy secondary treatment, rendering the final effluent unsuitable for reutilization, namely in the European Union (EU).
- The Fenton process can be used to refine such effluents via hydroxyl radical generated by H₂O₂ decomposition (Eq. 1) under acidic conditions (pH 2.5 - 3). Although this pH adjustment prevents iron catalyst precipitation (Eq. 2), it raises operational costs and limits feasibility

$$H_2O_2 + Fe^{2+} \rightarrow HO^{\bullet} + Fe^{3+} + HO^{-}$$
 (1)

$$Fe^{3+} + 3 OH^{-} \rightarrow Fe(OH)_{3} \downarrow$$
 (2)

This study investigates the application of chelating agents (CAs) as a means to stabilize the iron catalyst at near-neutral pH (Eq. 3 and Eq. 4), thus achieving a cost-effective tertiary treatment for reutilization goals.

$$Fe^{2+} + CA \leftrightarrow Fe^{2+} - CA$$

$$Fe^{3+} + CA \leftrightarrow Fe^{3+} - CA$$

(4)

METHODS

1. EFFLUENT PREPARATION AND COLLECTION

An oriented dillution of a synthetic, lees-based, raw WDW formulation was carried out to simulate a previous secondary treatment step

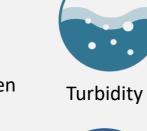
Table 1. Estimation of the composition of a biologically treated synthetic WDW

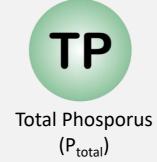
Component	Raw Effluent	Relative	Dilution	Final Effluent
	(mg/L)	Biodegradability	(%)	(mg/L)
Succinic acid	11500	1.26	82.5	2010
Fructose	5000	1.39	89.7	515
Glucose	4800	1.47	95	240
Tartaric acid	2460	1.14	84.4	383
Caffeic acid	800	0.75	47.0	424
Gallic acid	800	1.15	75.8	194
Syringic acid	800	1.06	74.8	202
Protocatechuic acid	800	0.98	78.7	171
Mallic acid	100	1.04	74.8	25

2. CHELATING AGENT SELECTION

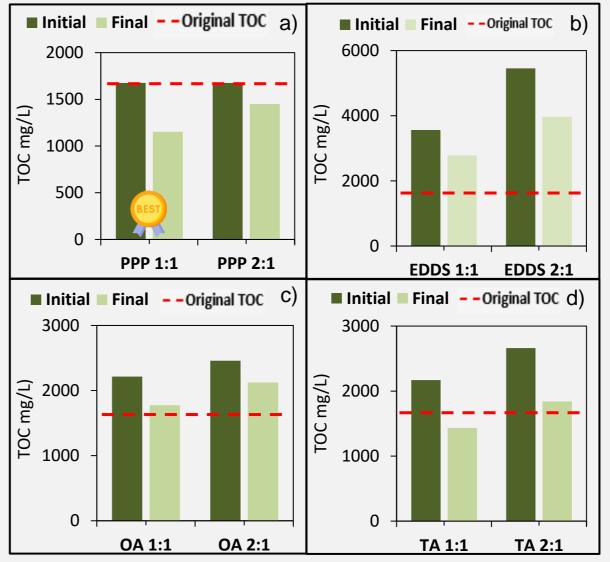
Preliminary screening was done based on commercial availability, toxicity of the ligand and ability to chelate at the desired WDW pH range (6.0 - 8.0)

Table 2. Chelating agents employed in the study


Table 2. chelating agents employed in the study					
Sodium	Ethylenediamine	Tartaric Acid	Oxalic Acid		
Pyrophosphate	dissuccinicacid	(TA)	(OA)		
(PPP)	(EDDS)	(IA)	(OA)		


3. PARAMETRIC STUDY Combined Thermostatic Electrode Bath $V_{reactor} = 200 \text{ mL}$ T = 35 °C T • Stirred Glass **Batch Reactor** pH ≈ 8.0 $[H_2O_2] = 0.2 - 3.0 \text{ g/L}$ (Stoichiometric with COD) $[Fe^{2+}] = 0.2 - 0.3 \text{ g/L} (1:10 \text{ mass ratio with } H_2O_2)$ $[CA]:[Fe^{2+}] = 1.0 - 2.0$ (CA-to-catalyst molar ratio)

4. EFFLUENT CHARACTERIZATION


Ammoniacal Nitrogen

Total Suspended Solids Alkalinity (TSS)

RESULTS & DISCUSSION

1. Performance Analysis

TOC net effect was assessed at different $[CA]:[Fe^{2+}]$ at pH = 8.0. Best performer ([PPP]:[Fe^{2+}] = 1) was then tested at an initial pH = 6.0, where no significant effect on TOC reduction was found between the run and the blank.

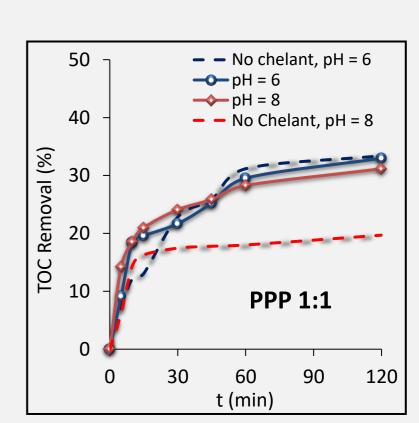


Figure 1. Initial and final TOC levels after treatment with PPP (a), EDDS (b), OA (c), and TA (d) at different CA-to-catalyst molar ratios for the synthetic effluent along the reaction (t = 2 h, pH = 8.0, T= 35 $^{\circ}$ C; $[H_2O_2] = 8.7 \text{ g/L} \text{ and } [Fe^{2+}] = 0.87 \text{ g/L}).$

Figure 2. Influence of pH on the TOC removal for the synthetic effluent along the reaction (T=35 °C; $[H_2O_2] = 8.7 \text{ g/L} \text{ and } [Fe^{2+}] = 0.87 \text{ g/L}).$

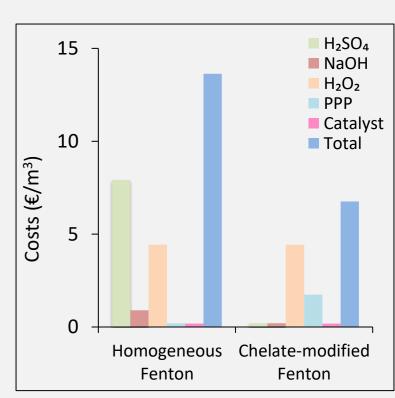
2. LEGISLATION COMPLIANCE AND COST ANALYSIS WITH REAL WDW

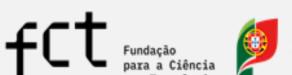
Real WDW was collected from an aerobic SBR (sequential batch reactor) at a local distillery and used for an extended run (t = 5h) with the best run ([PPP]:[Fe²⁺] = 1) whose results are summarized in Table 2.

Table 3. Characterization of real, biodigested WDW before and after treatment with pH = 8.1; T= 35 °C; $[H_2O_2]$ = 2.0 g/L, $[Fe^{2+}]$ = 0.2 g/L)

Parameter	Pre-Fenton	Post-Fenton	Requirements*			
BOD ₅ (mg O ₂ /L)	90	< 1	< 25			
Turbidity (NTU)	16	12	-			
TSS (mg/L)	<1	<1	< 35			
N _{total} (mg N/L)	11.97	14.41	< 15ª			
P _{total} (mg P/L)	21.5	253.0	< 2 ^a			
рН	8.1	6.7	6.0 - 9.0			

*EU Regulation 2020/741 for class B reclaimed water for agricultural irrigation; a optional parameters - applicable to some irrigation projects to minimize the risks of biofilm formation and obstruction of irrigation systems




Figure 3. Costs analysis for Fenton's reaction at standard conditions (pH 3.0) and the chelatemodified version (pH = 8.1; [PPP] = 1.05 g/L).

CONCLUSIONS

- ❖ PPP demonstrated the best affinity for iron in WDW at 1:1 ratio with Fe²⁺. Compared to a blank run with no CA at pH 8.0, TOC removal was increased by 12%.
- The final effluent complies with the Class B limits imposed but can only be used for irrigation when raw plants are not in contact with the irrigation water, processed food crops or non-food crops.
- Nonetheless, this approach significantly reduced reagent costs (53.7%) compared to the standard acidic conditions, which is a promising feature.

ACKNOWLEDGEMENTS

This work was financially supported by national funds through FCT/MCTES (PIDDAC), under the project DRI/India/0504/2020 - WASTENERGY -Distillery WASTes Valorisation into renewables ENERGY (DOI 10.54499/DRI/India/0504/2020), LEPABE, UIDB/00511/2020 (DOI: 10.54499/UIDB/00511/2020) UIDP/00511/2020 (DOI: 10.54499/UIDP/00511/2020) and ALICE, LA/P/0045/2020 (DOI: 10.54499/LA/P/0045/2020).

 (NH_3-N)