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RESULTS & DISCUSSION

XRD Fig 1a: PVC-0D shows a broad peak at 268 = 16.5°-
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Microplastics (MPs), plastic particles smaller than 5 mm, are widespread (@) 25°, typical of semicrystalline PVC. PVC-3D shifts slightly
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fragmentation or direct manufacture. They persist in nature and pose risks /\
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to ~17° with lower intensity, indicating partial
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amorphization. PVC-7D shows further intensity loss and

pollutants in aquatic and terrestrial systems, originating from larger plastic

broadening, confirming reduced crystallinity.

TGA Figs 1b-d:
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——PVC-0D PVC-0D shows high stability up to ~150 °C, with major
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by carrying harmful chemicals and affecting biological functions. Polyvinyl

begins degrading earlier (~250 °C) with ~95% mass loss,

. o (d) indicating reduced stability from oxidative attack. PVC-7D
chloride (PVC) MPs represent a major fraction of this pollution, with their 1 s %01 degrades fastest (~230°C onset) and leaves ~3-4%

760, 2 o0 residue, confirming progressive oxidation and weakened
behavior changing through aging. This study compares pristine PVC (PVC- | - £ o polymer bonds after aging. Oxldative aging decreases

crystallinity and stability, enhancing surface reactivity and
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3D) and 7 days (PVC-7D) to assess how oxidation alters their adsorption of Figure 1a. XRD b-d. TGA

methylene blue, highlighting the increased vector potential of aged MPs for
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organic pollutants and their environmental implications.
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METHOD

Three PVC microplastic samples were prepared: pristine PVC (PVC-0D),
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and oxidatively aged samples in KMnO, at 70 °C for 3 days (PVC-3D)
Figure 2. FTIR before and after adsorption of PVC with methylene blue
and 7 days (PVC-7D), without UV exposure, to simulate environmental s{ @ 0 T m) +PvCD
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measured surface charge variations. Adsorption experiments with Time () Time (n
Table 1: Adsorption kinetic models and parameters of the adsorption of Methylene
blue by PVC-0D, PVC-3D, & PVC-7D
methylene blue were conducted, and data were fitted to pseudo-first- S I S Kinetic Models | Parameter | Unit PVC-0D |PVC-3D | PVC-7D
124| 2 PvcD Pseudo-First R’ - 0.4110 0.6899 0.6845
10| Peavean Order K, min-| 0.0934 1.353 0.1403
order and pseudo-second-order kinetic models, as well as Langmuir and s 8]l==rPsopvcD alpred  |mgg’  [108 1845|169
= 6 qe(exp) mgg 3.71 4.08 5.10
j_ Pseudo-Second |F - 0.9990 0.9995 0.9988
Freundlich isotherms, to elucidate adsorption mechanisms and vector ). Order B gmg min” [0303 0327 1023
de(pred) mgg 3.71 4.08 5.10
0 S A ae(exp) mgg 3.71 4.02 5.01
potential influenced by oxidative aging. Time (n

CONCLUSION

Aged PVC (PVC-7D) showed the highest methylene blue adsorption, followed by PVC-
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1/Ce 11Ce 1iCe adsorption on heterogeneous surfaces. Environmentally, aged PVC poses greater
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Figure 4. Isotherms fitting for pristine PVC and aged PVC for methylene blue adsorption
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