The 9th International Electronic Conference on Water Sciences

11–14 November 2025 | Online

Hybrid Ultrasonic-Oxidative Treatment of PFASs in Firefighting Foams and **Enriched Foam Waste**

Olalekan Simon Awoyemi 1,2, Ravi Naidu 1,2

- ¹ Global Centre for Environmental Remediation (GCER), School of Environmental and Life Sciences, University of Newcastle, Callaghan NSW 2308, Australia
- ² Cooperative Research Centre from Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, NSW 2308, Australia Email: olalekan.awoyemi@uon.edu.au / lexiteas@yahoo.com

INTRODUCTION & AIM

Per- and polyfluoroalkyl substances (PFAS) are highly persistent and toxic contaminants commonly linked to aqueous film-forming foams (AFFF), a major source of soil and groundwater pollution. Foam fractionation (FF) is commonly used to concentrate PFAS from AFFF solutions, yet the resulting PFAS-rich foams present challenges. Ultrasonic degradation disposal emerged as a promising remediation strategy, as the conditions generated cavitation extreme sonication promote both radical-mediated and pyrolytic breakdown of PFAS. This study aims to evaluate the influence of oxidants, ferric chloride (FeCl₃), sodium persulfate (PS) (Na₂S₂O₈), and hydrogen peroxide (H₂O₂), on the ultrasonic degradation of PFAS, including PFOA and PFOS, AFFF, and FF.

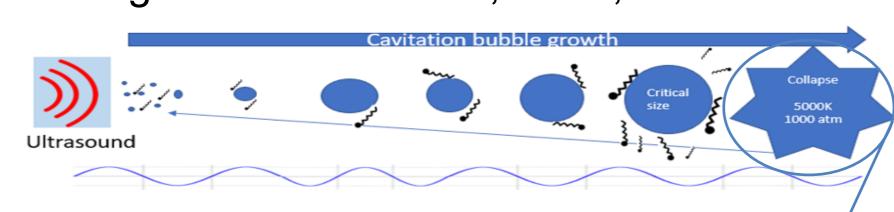
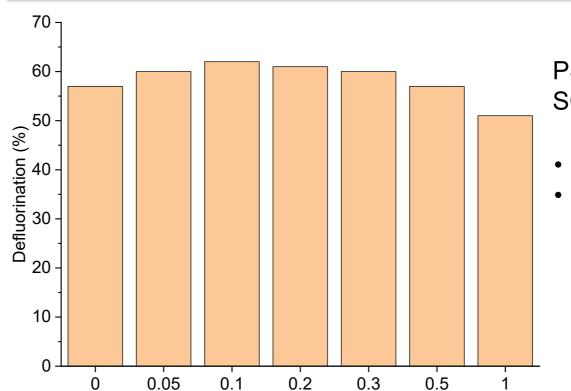


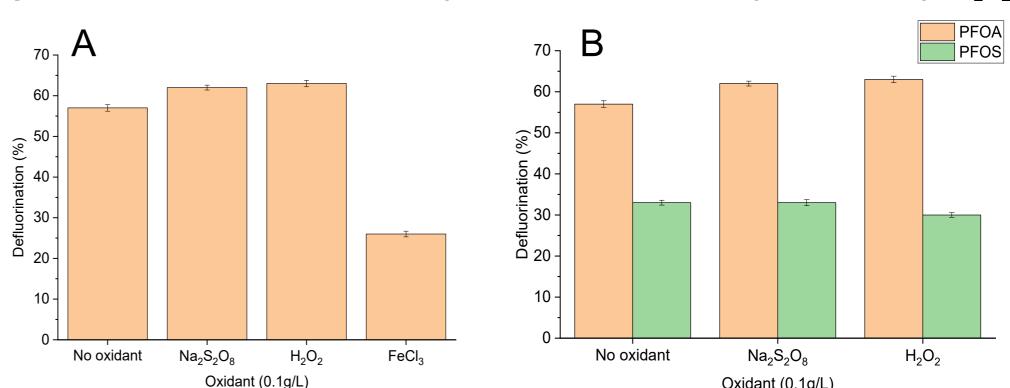
Figure 1. Schematic representation of the formation and collapse of bubbles by ultrasound.


- (A) Pyrolysis into PFAS radicals & headgroup(Major)
- (B) $H_2O + \gg \rightarrow H^{\bullet} + {}^{\bullet}OH$
- \rightarrow OH + PFAS radicals \rightarrow CO₂... (Sonochemistry)....(Minor)

METHOD FOAM В Source: (Al Amin et al., 2021) Ultrasound

Figure 2. Schematic representation of AFFF/FF foam (A), total oxidisable precursor (TOP) assay (B), the ultrasonication system (C).

Operational conditions			
Dilution	Frequency	Power density	Time
	(kHz)	(W/mL)	(h)
1000x	580	0.1875	4


RESULTS & DISCUSSION

PS was used because it effectively generate SO₄•⁻, which complement •OH

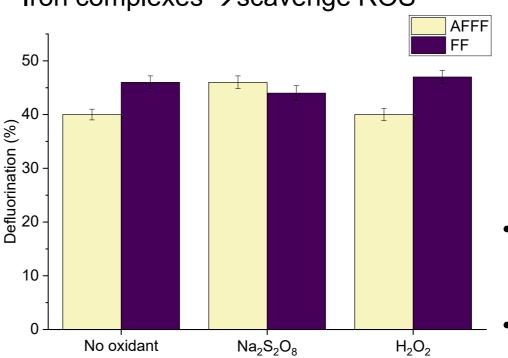

- Enhancement peaks at 0.1 g/L
- At higher conc., surplus PS may act as a scavenger, quenching SO₄^{-•} radicals or recombining to form less reactive species, thus diminishing the radical pool available for PFAS attack

Figure 3: Optimisation of oxidant dosage for ultrasonic PFAS degradation using Na₂S₂O₈

Figure 4: Defluorination efficiencies of Na₂S₂O₈, H₂O₂, and FeCl₃ on PFOA (A), and of Na₂S₂O₈ and H₂O₂ on PFOA and PFOS (B). Data is the average of two replica tests

- $Na_2S_2O_8 \approx H_2O_2 > control$ FeÇl₃ < control
- Defl. (%): PFOA > PFOS
- PFOS larger size (-SO₃H vs -CO₂H) \rightarrow (+1) -CF₂-
- $Na_2S_2O_8 \approx control > H_2O_2$
- Fenton-like reactions, less eff.
- Iron complexes →scavenge ROS

- Control → AFFF > FF
- Na₂S₂O₈ → AFFF > FF > control
- $H_2O_2 \rightarrow AFFF \approx control < FF$

Possible reasons

- Differences in AFFF & FF compositions (surfactant, HC, solvents,...scavenge ROS
- Viscosity, foaming, surface tension,.. alter cavitation dynamics

Figure 5: Effect of oxidants on AFFF/FF defluorination. Data is the average of two replica tests

CONCLUSION

- Not all oxidants contribute equally under ultrasonic conditions
- Defl. (%): PFOA > PFOS → 15 F vs 17 F
- Na₂S₂O₈ & H₂O₂ enhance FF defluorination; only Na₂S₂O₈ for AFFF
- Components of PFAS-containing waste can influence defluorination

Acknowledgment

The authors acknowledge funding from the Australian Research Council (SR180200015), as well as support from the CRC for Contamination Assessment and Remediation of the Environment (CRC CARE) and the Global Centre for Environmental Remediation (GCER) at the University of Newcastle, NSW

REFERENCES

