ECWS-9

2025

Conference

s ;,. , a | | ; S =
 9th International Electroni
Y, - 24 - = A . ; e s ! C‘.:.—i}'l. 3 ~: v I» - "~ e
Ice on Water Science
- "‘»‘\‘ - -

S

Land Use and Land Cover Analysis and Prediction Using Machine Learning Approach: A

Case Study of Gaibandha District, Bangladesh
Sujoy Dey?’, S. M. Tasin Zahid!, Pranto Kumar Sarker?

lpostgraduate Student, Department of Water Resources Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh.
2Undergraduate Student, Department of Water Resources Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh.

INTRODUCTION & AIM

RESULTS & DISCUSSION

Land use and land cover (LULC) change analysis is at the core of analyzing a region's
landscape dynamics and informs sustainable environmental decision-making and policy
planning. For Bangladesh, with its urbanization and expansion of agricultural cover, these
problems have a considerable influence on natural resources and ecosystems, necessitating
the analysis of LULC change to map out future development plans. The study focuses on
Gaibandha district, Bangladesh, using Google Earth Engine (GEE) and a machine learning
approach in exploring LULC changes between 2019 and 2022, with projections to 2025.
Utilizing ESRI Global Land Cover data and combining elevation data from SRTM, the study
builds a Random Forest classifier to predict land cover changes, identifying nine distinct
LULC classes, e.g., water, trees, flooded vegetation, crops, built-up, bare ground, snow/ice,
clouds, and rangeland [1-3]. The result, as empirically tested for accuracy, reveals extensive
landscape transformations, particularly agricultural-to-built-up area conversion, pointing to
the operating forces of urbanization. Second, the research employs Shannon's diversity
index and transition matrix analysis in assessing and interpreting landscape heterogeneity
and change patterns. The 2025 forecasts show that urban expansion and agricultural land
conversion will continue to be major environmental concerns. This research identifies the
potential of cloud-based remote sensing platforms like GEE to monitor LULC change at
regional scales and aid data-informed decision-making for regional development and climate
change resilience planning.
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Figure 1. Methodological flowchart.
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Figure 2. Study area.
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Figure 3. Model performance evaluation and land cover change analysis: (a) Overfitting
analysis showing train vs. test accuracy, (b) Model stability across different random seeds,
(c) Learning Curve: Accuracy vs. number of trees, (d) Feature importance in Random Forest
classification, (e) Significant land cover transitions (2019 to 2022), (f) Shannon diversity
index temporal variation, and (g) Land cover distribution by class across years (2019, 2022,
2025), LULC maps for (h) 2019, (i) 2022, and (j) 2025 prediction.

CONCLUSION & FUTURE WORK

Future work would involve incorporating higher-resolution satellite images and other data
sources, I.e., socio-economic variables, into the models to enhance the accuracy of LULC
predictions. Including time-series analysis to capture more detailed temporal patterns and
expanding the analysis to other parts of Bangladesh would provide a broader understanding
of LULC processes. Also, the incorporation of deep learning techniques would help the
model detect small land cover variations and improve its predictive capability. Lastly, field
validation would render the predictions more trustworthy and help in policy-making more
effectively.
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