The 1st International Online Conference on Fermentation

12-13 November 2025 | Online

The Effect of Different Cryoprotectants on the Survival Rate of Freeze-dried Lactic Acid Bacteria (LAB) Powder for Cucumber Fermentation

Marinich Net^{1,2}, Sophak Phourng², Dolla Bross², Socheata Mao^{2,3}, Yve Wache³, Reasmey Tan^{1,2*}

¹ Research and Innovation Center, Institute of Technology of Cambodia, Russian Federation Blvd., P.O. Box 86, Phnom Penh, Cambodia

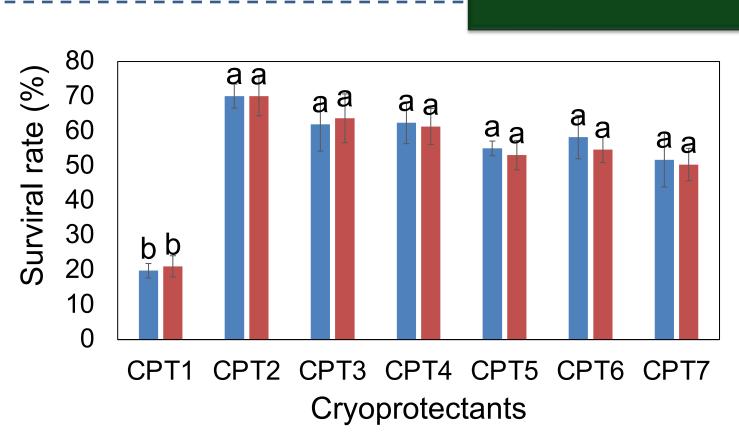
² Faculty of Chemical and Food Engineering, Institute of Technology of Cambodia, Russian Federation Blvd., P.O. Box 86, Phnom Penh, Cambodia ³ Univ. BourgogneEurope, Institut Agro, INRAE, UMR PAM, F-21000 Dijon, France

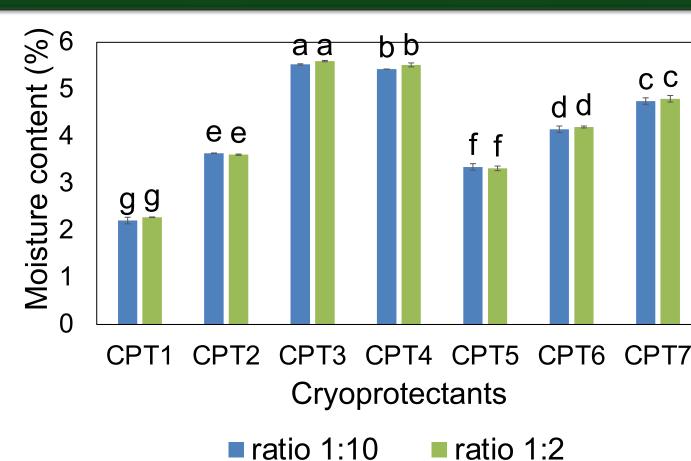
*Corresponding author: rtan@itc.edu.kh

INTRODUCTION & AIM

- ☐ Cryoprotectants are substances used to protect biological tissues and cells from damaged caused by freezing.
- ☐ Freeze drying is widely used to preserve LAB, but the process can cause cell damage and reduce bacterial viability.
- ☐ This study aimed to evaluate the effectiveness of various cryoprotectants on the survival rate of fermenting cucumbers using freeze-dried LAB powder.

METHOD


RESULTS & DISCUSSION


Experimental design

- ☐ The preparation of freeze-dried LAB with cryoprotectants was done in different ratios, including 1:10 and 1:2.
- ☐ The types of cryoprotectants used in this study are as follows: saline (CPT1), skim milk (CPT2), sucrose (CPT3), skim milk mixed with sucrose (CPT4), maltodextrin (CPT5), lactose (CPT6), and glucose (CPT7).

Quality analysis

- $\Box \text{ Survival rates} = \frac{N_f}{N_i} \times 100$
- □ Physicochemical parameters: Moisture content, Water activity, pH, Total acidity, Reducing sugar, Total soluble solids (TSS), and Salt content.
- □ Sensory evaluation

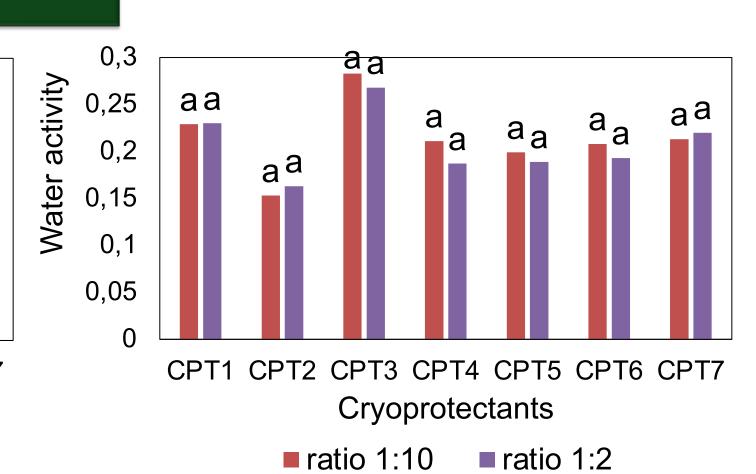


Figure 1. Survival rate of A3 strain in 24h at 4°C

■ ratio 1:10 ■ ratio 1:2

Figure 2. Moisture content of freeze-dried LAB

Table 1. Physicochemical parameters of cucumber fermentation during 48 hours.

LAB	Spontaneous	Skim milk (1:10)	Skim milk (1:2)	Pure culture
рН	3.44±0.02 ^{ab}	3.42±0.007 ^b	3.34±0.014 ^b	3.48±0.007 ^a
Total acidity (%)	0.47±0.02 ^a	0.49±0.02 ^a	0.47±0.02 ^a	0.49±0.02 ^a
Reducing sugar (g/L)	0.59±0.003 ^a	0.12±0.02 ^b	0.07±0.0006bc	0.04±0.003 ^c
TSS (°Brix)	4.05±0.07 ^a	4.05±0.07 ^a	4.10±0.00 ^a	4.25±0.07 ^a
Salt content (%)	2.16±0.007 ^a	2.23±0.02 ^a	2.32±0.007 ^a	2.36±0.02 ^a

NOTE: Each value is presented as mean \pm standard deviation. a-c mean with the same letter within the same column are not significant different ($p \ge 0.05$).

Figure 3. Water activity of freeze-dried LAB

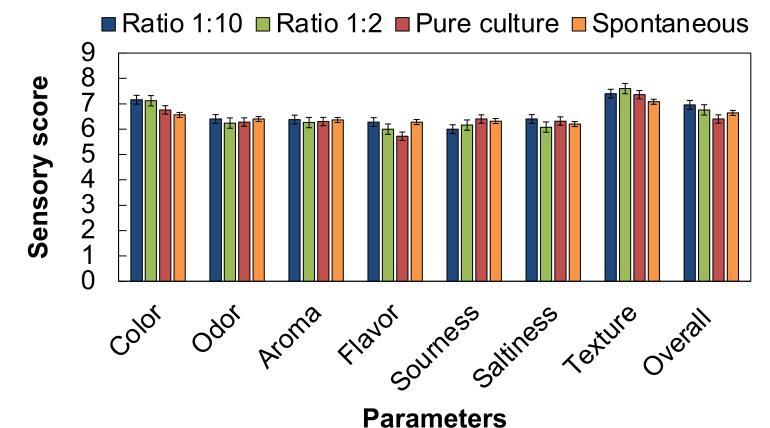


Figure 4. Sensory evaluation on cucumber fermentation

CONCLUSION

- ☐ Freeze-drying LAB with skim milk is effective for the LAB yielding a survival rate of ~70%.
- ☐ Skim milk was selected for cucumber fermentation.
- ☐ The moisture content of the freeze-dried LAB varied significantly $(p \le 0.05)$ among different cryoprotectants, while the water activity showed non-significantly difference $(p \ge 0.05)$.
- ☐ There was no significant difference in pH, total acidity, reducing sugar, total soluble solids, and salt content.
- ☐ Cucumber fermentation using lyophilization powder is acceptable to consumers.

RECOMMENDATION

- ☐ Study the shelf-life of lyophilized LAB
- ☐ Control the stability of the temperature and pressure during freeze-drying process.

ACKNOWLEDGEMENT

We would like to acknowledge the Japan International Cooperation Agency (JICA) for its support through the LBE project.