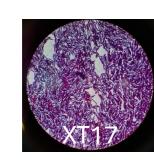


High Sporulation of *Bacillus* XT13, XT14, and XT17 in Submerged medium for Drought-Stress Applications

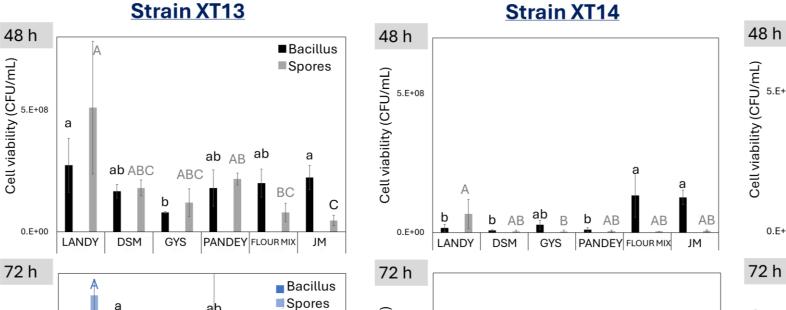
Quiroga-Cubides, G., Barrios, S., Urbina, C., Castro, L., Gómez, M., Cruz, M.

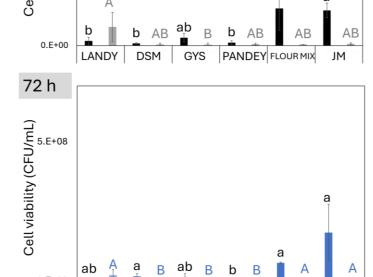

INTRODUCTION

Climate change has intensified drought and desertification in Latin America, threatening agricultural productivity and food security (1). Recurrent drought events reduce yields and crop quality while increasing dependency on synthetic fertilizers such as NPK, which contribute to soil degradation and water contamination. Plant Growth-Promoting Bacteria (PGPB) represent a sustainable and environmentally friendly strategy to enhance crop performance under drought stress (2). In this context, AGROSAVIA selected three Bacillus strains—B. subtilis XT13, Priestia megaterium XT14, and B. amyloliquefaciens XT17—for their growth-promoting effects and potential to mitigate water deficit stress.

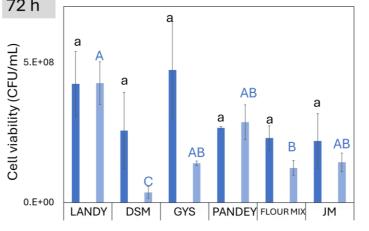
OBJECTIVES

aimed to optimize production of Bacillus strains XT13, XT14, and XT17 in submerged culture for drought-stress mitigation. Six liquid media were evaluated to compare growth and sporulation performance and identify the most productive medium.


METHODS



RESULTS


••••

30°C - LB agar @ 48h

LANDY DSM GYS PANDEY FLOUR MIX JM

The six media tested revealed Landy medium as the most effective for both growth and sporulation of the three Bacillus strains

XT13 showed the highest sporulation capacity, reaching 7.1×108 spores/mL after 72 h.

LANDY DSM GYS PANDEY FLOURMIX JM

- XT17 reached 4.3×108 spores/mL at 72 h, indicating optimal sporulation after the exponential phase. • XT14 presented its highest sporulation earlier, achieving 6.7×10⁷ spores/mL at 48 h, suggesting faster metabolic activation.

DISCUSSION AND CONCLUSIONS

- **★**Optimizing the culture medium was essential to enhance spore productivity and technical scalability. Among the six media evaluated, Landy medium supported the highest growth and sporulation.
- ★The stability of microbial inoculants is achieved by stress-resistant spores capable of maintaining metabolic activity under field conditions.
- **★**The successful optimization of these strains contributes to the development of sustainable biofertilizers that can reduce dependence on chemical fertilizers and minimize soil and water contamination. This aligns with the growing demand for bio-based agricultural technologies in Latin America, where climate change increasingly threatens food security.

REFERENCES

- 1. Moreno-Galván et al., 2020. Appl. Soil Ecol, 147.
- 2. Cortés-Patiño et al., 2021. Microorganisms, 9, 91.
- 3. Landy & Warren 1948. Proc Soc Exp Biol Med, 67(4):539-41.
- 4. Guez et al., 2021. Front. Bioeng. Biotechnol. 9:678469.
- 5. DSMZ 2021. Medium 1671.
- 6. Mirmajidi et al., 2024. Appl Biochem Biotechnol 196, 7557-7569.
- 7. Tian et al., 2022. Processes, 10, 1133.
- 8. Zapata-Narváez et al., 2024. Chilean J Agric & Animal Sciences, 40(1), 81-90.