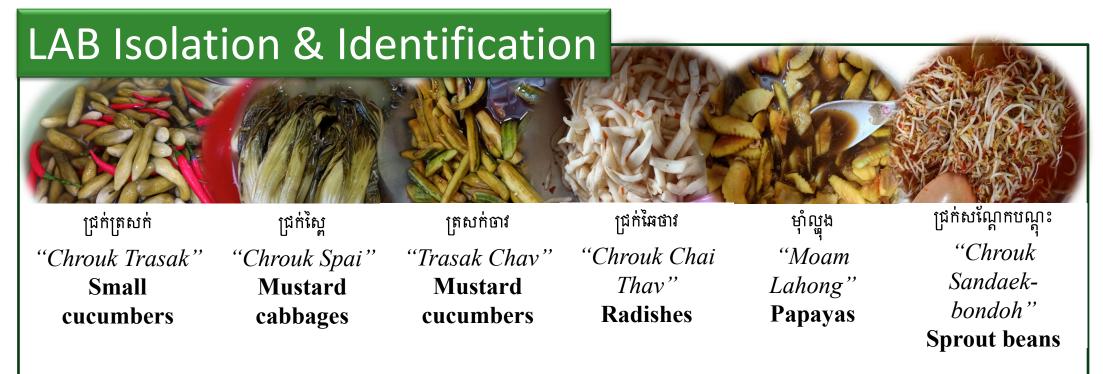
The 1st International Online Conference on Fermentation

12-13 November 2025 | Online

Lactococcus lactis, an original producer of volatile compounds during the fermentation of mashed cucumber.

Socheata Mao (1,2), Thi Kim Chi Nguyen (1), Reasmey Tan (2), Hélène Licandro (1), Yves Waché (1)

(1) International Joint Research Laboratory, Tropical Bioresources & Biotechnology, Univ. Bourgogne Europe, Institut Agro, INRAE, UMR PAM, F-21000 Dijon, France. (2) Institute of Technology of Cambodia, Phnom Penh, Cambodia.


INTRODUCTION & AIM

- Fermented vegetables are currently getting attention worldwide due to their interest through lactic acid bacteria's (LAB) beneficial effects (1).
- Sensorial challenges linked to fermentation highly depend on LAB species' biochemical capability (1).
- Volatile profiles contributing to flavor and nutrient properties are necessarily important for assessment in green vegetables fermentation (1).

Aim:

• To explore volatile profiles produced by different LAB in mashed cucumber fermentation.

METHOD

- Strains isolated from various fermented vegetables collected in Cambodian markets
- Genotype identification by 16S rRNA gene sequencing

LAB fermentation with mashed cucumbers

Cucumber treatment

- Single strain inoculation
- L. plantarum (1 strain) L. pentosus (2 strains)
- P. pentosaceus (1 strain) L. lactis (1 strain)
- L. fermentum (1 strain)
- Inoculation at 10⁶ cfu/g in 200 grams of

cucumber

3

Fermentation

for 24 hours at 37 °C:

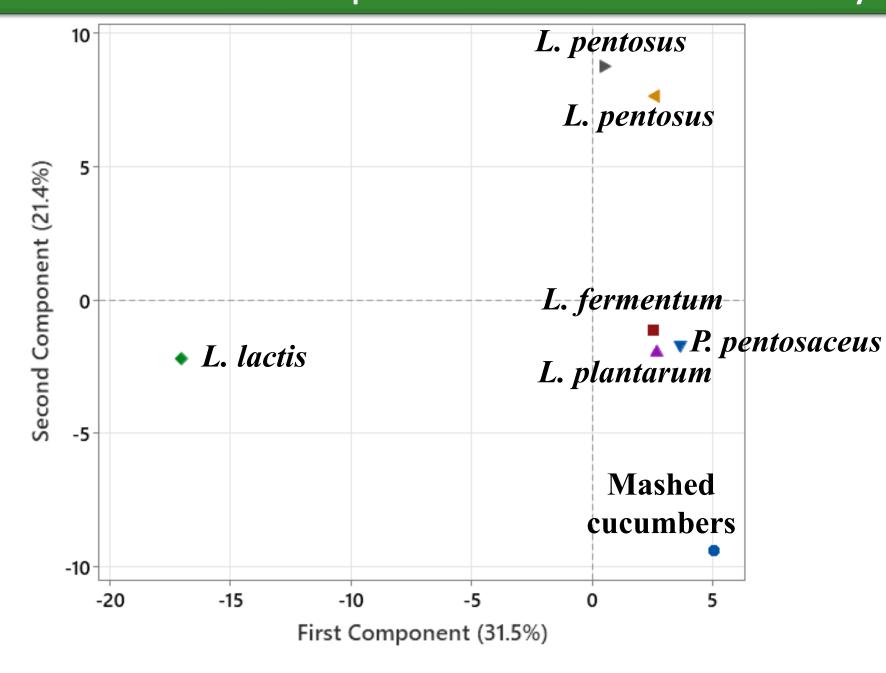
- Other species reach 108 cfu/g
- L. lactis reach 10⁷ cfu/g

Pasteurized for 5 min at 80 °C

CONCLUSION & PERSPECTIVES

- LAB affected volatile profiles of cucumber.
- L. lactis produced a wide range of volatile esters.

Perspectives:


- Volatile esters are known to be fruity and floral scents which is interesting to be found in L. lactis fermentation with cucumbers. Using L. lactis as a starter in green vegetables fermentation could be further studied about organoleptic properties to observe whether if volatile esters formation enable flavor improvement.
- Biochemical pathway of *L. lactis* forming volatile esters must be further investigated.

REFERENCES

- (1) Gangakhedkar, P.S., Deshpande, H.W., Törős, G., El-Ramady, H., Elsakhawy, T., Abdalla, N., Shaikh, A., Kovács, B., Mane, R., Prokisch, J., 2025. https://doi.org/10.3390/foods14132155.
- (2) Verstrepen, K.J., Van Laere, S.D.M., Vanderhaegen, B.M.P., Derdelinckx, G., Dufour, J.-P., Pretorius, I.S.,
- Winderickx, J., Thevelein, J.M., Delvaux, F.R., 2003. https://doi.org/10.1128/AEM.69.9.5228-5237.2003. (3) Nardi, M., Fiez-Vandal, C., Tailliez, P., Monnet, V., 2002. https://doi.org/10.1046/j.1365-2672.2002.01793.x.

RESULTS & DISCUSSION

Score plot of volatile compounds found in this study

- This PCA score plot of volatiles found in this study presented half of total variability: PC1 (31.5%) and PC2 (21.4%) of total variance in data.
- After fermentation, volatiles were greatly modified by LAB.
- Volatiles from cucumber fermented with L. fermentum, L. plantarum, P. pentosaceus resulted in closer relation to each other compared to other LAB species.
- Despite being the same genus, L. plantarum and L. pentosus resulted in different volatile profiles.
- L. lactis presented important differentiation of volatile profiles in cucumber fermentation by comparing with other LAB species.

L. lactis is the key producer of acetate esters

	Pasteurized cucumbers (μg/kg)	L. fermentum CC22-MRS (µg/kg)	L. plantarum R3 (μg/kg)	L. pentosus R6 (µg/kg)	L. lactis SB1 (μg/kg)	P. pentosaceus Pa12 (μg/kg)
Acetate esters						
Ethyl acetate	0	0	0	0	4.01	0
Hexyl acetate	0	0	0	0.51	6.6	0.09
Pentyl phenylacetate	0	0	0	0	0.99	0
Octyl acetate	0	0	0	0	0.41	0
Isopentyloxyethyl acetate	0.13	0	0	0	0	0.14
3-6-Nonadienyl acetate	0	0	0	0	0.11	0
(Z)-6-Nonenyl acetate	0	0.08	0.19	0.35	0.51	0.2
Nonyl acetate	0	0.11	0.06	0.15	0.13	0.1
3,7,11,Trimethyl-8,10-dodecedienylacetate	0	0.02	0.03	0	0.06	0.04
Total	0.13	0.22	0.28	1.01	12.82	0.58

- L. lactis produced the highest number of volatile esters.
- Alcohol Acetyltransferase (ATF) potentially involved in the production of acetate esters have not been completely elucidated. ATF genes in yeast are involved in the acetate ester formation from long chain alcohols, but not from shorter chain alcohols (2).
- For L. lactis, no homologues of ATF have been identified but hexyl acetate could imply EstA esterase (3).