The 1st International Online Conference on Fermentation

12-13 November 2025 | Online

Impact of novel biotechnological strategies in the fermentation of Sicilian wines on the content of total polyphenols

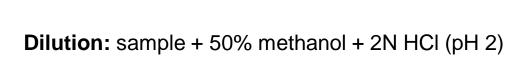
Craparo, V.¹; Cuenca, M.²; Viola, E.¹; Vella, A.¹; Dolce, I.¹; Pirrone, A.¹; Naselli, V.¹; Notarbartolo, G.³; Oliva, D.⁴; Gamero, A.²; Francesca, N.¹; Gandía, M.²; and Cilla, A.²

¹ Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze Bldg. 5, Ent. C., 90128 Palermo (PA), Italy. Bionutest research group. Faculty of Pharmacy and Food Sciences, University of Valencia, Avda. Vicent Andrés Estellés S/N 46100 Burjassot (València), Spain.3 G. Milazzo agricultural company- Terre Della Baronia S.r.I., Strada Statale 123 - Km 12+700, 92023 Campobello di Licata (AG), Italy. ⁴ Regional Institute of Wine and Oil – Region of Sicily, Via Libertà 66, 90143, Palermo (PA), Italy.

INTRODUCTION & AIM

Catarratto is the main white grape variety in Sicily, and enhancing its value is a key goal. The production of wine is pervasive across the island, a consequence of its genetic biodiversity, which has over time engendered viticultural plasticity and oenological versatility, accompanied by vigour and robust yields [1].

This study examined the impact of divergent fermentation strategies on the total phenolic content (TPC) of wines produced from Catarratto grapes. In particular, three biotechnological approaches were explored: (i) sequential inoculation using three novel non-Saccharomyces yeast strains (Starmerella lactis-condensi, Candida oleophila, and Lachancea thermotolerans) followed by Saccharomyces cerevisiae; (ii) Catarratto wines either non-macerated or subjected to short or long maceration in contact with orange seeds and peel, with/without sulfites, and fermented using St. lactis condensi, S. cerevisiae, and lactic-acid bacteria; and (iii) sparkling wines produced using the traditional method with selected S. cerevisiae strains.


METHODOLOGY

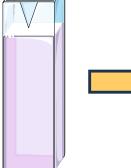
Antioxidants extraction [2]

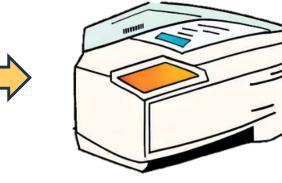
Extractable antioxidants (Aqueous-organic extract)

- **Centrifugation:** 978 *g*/10 min
- **Recovery of the supernatant**
- Addition of 70% acetone
- **Centrifugation:** 978 *g*/10 min
- **Combination of both supernatants**

Total polyphenols [2]

- 3 mL Na₂CO₃
- 100 μL Folin-Ciocalteu
- 100 µL Sample

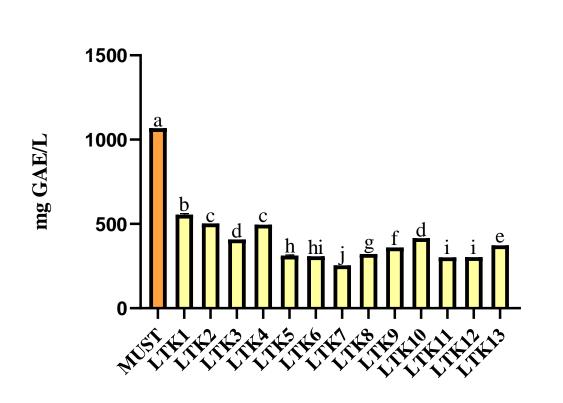


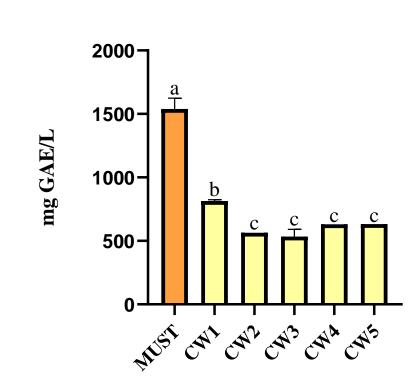


1 h darkness

Room

temperature

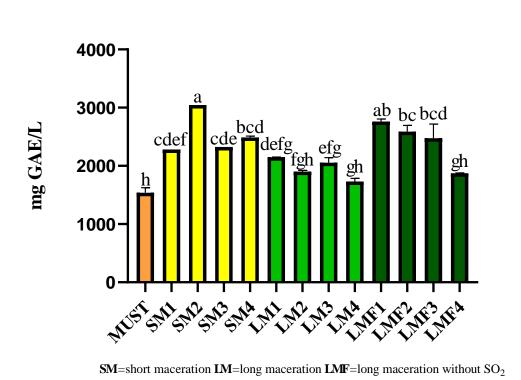

• $\lambda = 765 \text{m}$

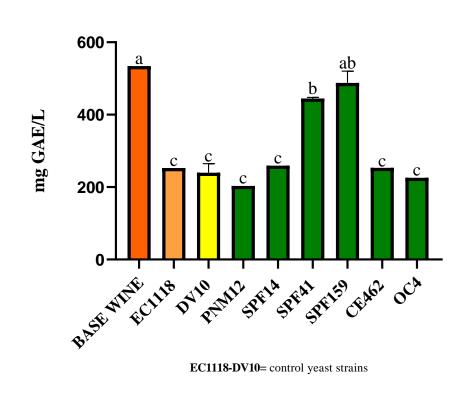

mg GAE/L

RESULTS & DISCUSSION

White wines

☐ Fermentation generally led to a reduction in TPC compared to must.




Orange wines

☐ Maceration increased the TPC, particularly when *St.* lactis-condensi was followed by S. cerevisiae. The highest total polyphenol values were obtained from **SM2** and **LMF1** yeast strains.

Sparkling wines

☐ TPC varied significantly depending on the noncommercial strain of S. cerevisiae selected. The highest total polyphenol values were obtained from SPF159 and SPF41 yeast strains.

Different letters (a-j) indicate significant differences between the samples (n = 3 replicates per sample) One-way ANOVA followed by Tukey's test (p < 0.05). GAE: Gallic acid equivalent

CONCLUSION

- ☐ The study demonstrated that divergent fermentation strategies exert a substantial influence on the TPC in wines derived from Catarratto grapes.
- ☐ Fermentation has been shown to generally reduce TPC compared to must, but the use of specific non-Saccharomyces yeasts, maceration, and the selection of S. cerevisiae strains in sparkling wines has been demonstrated to be effective in increasing its content.
- ☐ The findings of this study suggest that the implementation of targeted winemaking protocols can enhance the TPC and quality of Catarratto wines.

REFERENCES

[1] Fracassetti D, Stuknytė M, La Rosa C, Gabrielli M, De Noni I, Tirelli A. "Thiol precursors in Catarratto Bianco Comune and Grillo grapes and effect of clarification conditions on the release of varietal thiols in wine". Aust. J. Grape Wine Res. **2017**; 24(1): 125–133.

[2] Cuenca-Ortolá M, Alegría A, Cilla A. "Valencian Paella: Synergistic Antioxidant Properties of a Complete Dish versus Its Isolated Ingredients". Biol. life sci. forum. 2023; 26(1): 55.

Acknowledgements

This work was financially supported by PRIMA 2022 Program Horizon Europe (MEDIET4ALL: A Transnational movement to support the sustainable transition towards a healthy and Eco-friendly Agri-Food System through the promotion of MEDIET and its lifestyle in modern society) (PCI2023-143402) co-financed by the State Research Agency - AEI -, the Ministry of Science and Innovation, and the European Union. Marta Cuenca holds a research staff contract in the aforementioned project (CPI-23-620).

