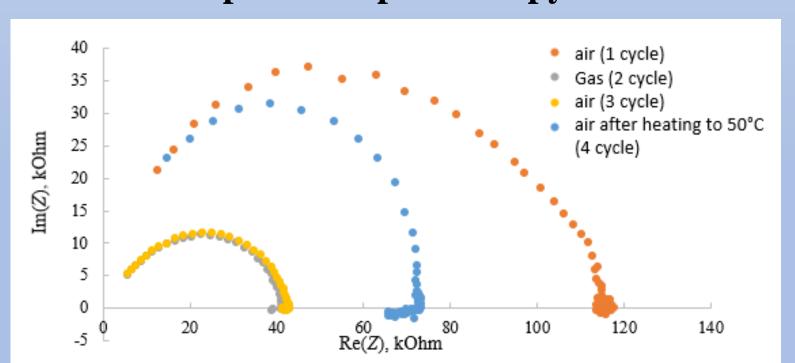


Impedance-based analysis of gas sensing using MoS₂ nanostructures

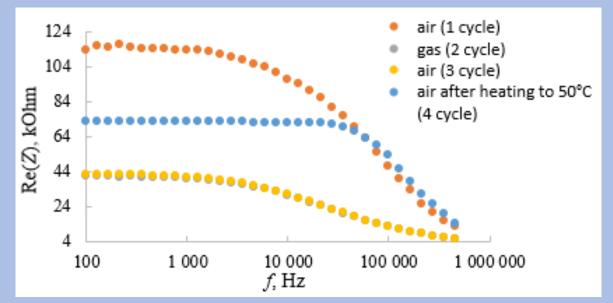
Sergey Buzovkin, Arina Rybina, Cong Doan Bui, Svetlana Nalimova

Saint Petersburg Electrotechnical University, St. Petersburg, Russia

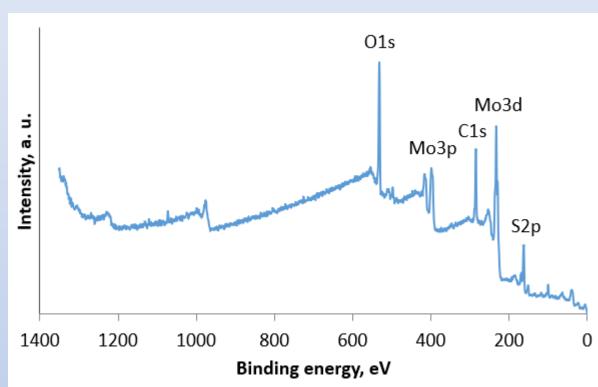
Aim: hydrothermal synthesis of MoS₂ for use as gas sensors operating at room temperature.

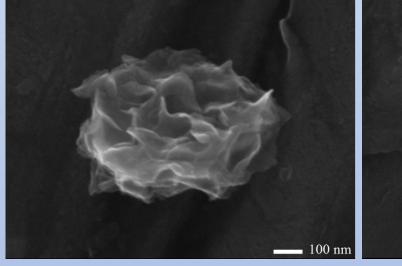

Sample 2

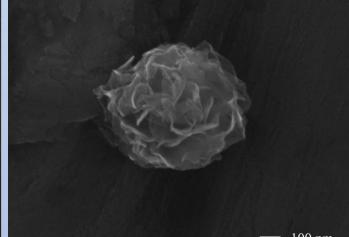
Relevance: MoS₂ has great potential for use in advanced electronic and optoelectronic devices because of its unique properties. Due to the layered structure of MoS₂, it is possible to control the electronic properties by varying the number of layers. This material has shown advantages in gas sensors such as a low detection limit. However, the stability of its characteristics needs improvement.


Synthesis C₂H₂O₄·2H₂O SC(NH₂)₂ Na₂MoO₄·2H₂O Hydrothermal synthesis (200°C, 14 h) Drying of powder Spin-coating Drying of layer Drying of layer

Impedance spectroscopy


Sample 1

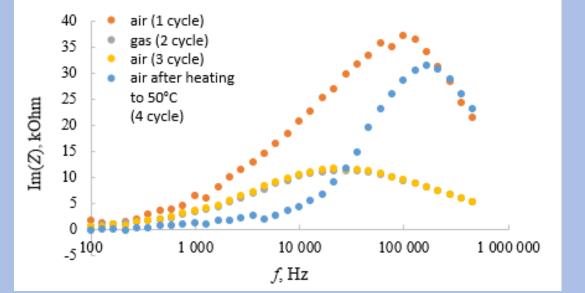



Nyquist diagram of Sample 1 at room temperature in an air environment, when exposed to vapors of isopropyl alcohol (1000 ppm), recovery in air before and after heat treatment

Characterization

Response calculated using real part of impedance:

$$S_{Re} = Re(Z)_{air}/Re(Z)_{aas}$$


Response calculated using imaginary part of impedance:

$$S_{\rm Im} = {\rm Im}(Z)_{air}/{\rm Im}(Z)_{gas}$$

The highest response:

$$S_{\text{Re}} = 3.8$$
 at 60 kHz;

$$S_{Im} = 4.3$$
 at 278 kHz.

Frequency dependences of real and imaginary parts of impedance of Sample 1 at room temperature in an air environment, when exposed to vapors of isopropyl alcohol (1000 ppm), recovery in air before and after heat treatment

Conclusions: The MoS₂ sensor layer can detect reducing gas vapors at room temperature using either the real or imaginary component of the impedance as a signal, at frequencies between 100 Hz and 500 kHz. However, in this case, an additional heat treatment at 50 °C is required to recover the sample's properties.

References:

- 1. Doan B. C. et al. Transition Metal Dichalcogenide Hierarchical Nanomaterials for Chemiresistive-Type Gas Sensors //2024 Conference of Young Researchers in Electrical and Electronic Engineering (ElCon). IEEE, 2024. C. 536-539.
- 2. Liang L. et al. Hydrothermal synthesis of the flower-like mos2 nanosheets microspheres and its photocatalytic degradation of methyl orange //Chalcogenide Letters. -2020. T. 17. No. 11. C. 555-563.
- 3. Ramohlola K. E. et al. Instrumental techniques for characterization of molybdenum disulphide nanostructures //Journal of Analytical Methods in Chemistry. − 2020. − T. 2020.