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Abstract

Municipal sewer networks span across large areas in cities around the world and require
regular inspection to identify structural failures, blockages, and other issues that pose
public health risks. Traditional inspection methods rely on remote-controlled robotic cam-
eras or CCTV surveys performed by skilled inspectors. These processes are time-consum-
ing, expensive and often inconsistent; for example, the United States alone has more than
1.2 million miles of underground sewer pipes, and up to 75,000 failures are reported an-
nually. Manual CCTV inspections can only cover a small fraction of the network each
year, resulting in delayed discovery of defects and costly repairs. To address these limita-
tions, this paper proposes a scalable and low-power fault detection system that integrates
embedded machine vision and Tiny Machine Learning (TinyML) on resource-constrained
microcontrollers. The system uses transfer learning to train a lightweight TinyML model
for defect classification using a dataset of sewer pipe images and deploys the model on
battery-powered devices. Each device captures images inside the pipe, performs on-de-
vice inference to detect cracks, intrusions, debris and other anomalies, and communicates
inference results over a long-range LoRa radio link. Experimental results demonstrate that
the proposed system achieves 94% detection accuracy with sub-hundred-millisecond in-
ference time and operates for extended periods on battery power. The research contributes
a template for autonomous, scalable, and cost-effective sewer condition assessment that
can help municipalities prioritize maintenance and prevent catastrophic failures.

Keywords: TinyML vision; remote inspection; embedded system; low-power IoT;
industry; innovation & infrastructure; sustainable cities & communities

1. Introduction

Sewerage infrastructure is among the most expensive and expansive public assets in
modern society. For example, the United States has an estimated 1.2 million miles of sewer
pipes, and up to 75,000 pipe failures are reported each year [1]. The scale of these networks
makes routine inspection extremely challenging. In Australia, stormwater pipes consti-
tute about 19% of local government infrastructure, yet only a small percentage of pipes
are inspected annually because current practices rely on manual closed-circuit television
(CCTV) surveys [2]. Similar issues are reported in Europe, where sewer networks such as
Germany’s 608,000 km system are inspected only once every 10-15 years [3]. Delayed de-
tection means that small defects can evolve into major collapses or blockages, releasing
untreated wastewater into the environment and causing significant financial and societal
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damage. Manual inspections are labor intensive, expensive and prone to human error,
and the monotony of reviewing long video recordings can result in overlooked defects.
The National State of the Assets Report notes that 36% of public infrastructure assets in
Australia are in poor or fair condition, and that inspection processes are largely labor-
intensive and time-consuming,.

Technological advances in artificial intelligence (AI) and computer vision offer an
opportunity to automate defect detection. Recent studies have demonstrated deep learn-
ing models that identify and classify sewer defects from CCTV images [4]. These models
include object detection networks such as EfficientDet-D0, which achieved an 83% detec-
tion rate on a dataset covering 14.7 km of sewer pipes, and instance-segmentation models
based on YOLOVS, which reached a mean average precision (mAP@0.5) of 0.92 on storm-
water pipe footage. However, existing research typically assumes ample computing re-
sources and a reliable power supply. It also focuses on post-processing recorded video
rather than performing detection in real time.

This paper proposes a scalable sewer fault detection and condition assessment sys-
tem that harnesses embedded machine vision and TinyML. The key contributions are as
follows:

e Lightweight defect detection model: We train a compact convolutional neural net-
work using transfer learning on a dataset derived from the Sewer-ML dataset and
other publicly available sources. The model is compiled to TensorFlow Lite format
and quantized to 8-bit integers to run efficiently on microcontrollers.

e Embedded sensor design: A battery-powered device integrates a camera, microcon-
troller, and LoRa transceiver. The device periodically captures images, performs on-
device inference to classify defects, transmits compact inference results, and enters a
low-power sleep mode. This architecture minimizes energy consumption and data
transmission.

The remainder of the paper is organized as follows. Section 2 reviews related work
on sewer inspection, defect detection datasets, and TinyML for embedded vision. Section
3 details the proposed system, including hardware design, dataset and model develop-
ment. Section 4 presents experimental results and discusses system performance. Section
5 concludes the paper and outlines directions for future work.

2. Related Work

Recent years have seen growing interest in complete automated systems for sewer
condition monitoring that integrate sensing hardware, embedded intelligence, data com-
munication, and autonomy. These systems aim to reduce reliance on manual inspections
by combining imaging, robotics, real-time inference, and networked reporting into cohe-
sive workflows for scalable and efficient infrastructure health assessments.

Jung et al. [3] presents a comprehensive robotic inspection setup integrating a camera
array, front-mounted camera, and LiDAR to improve data quality in sewer inspection.
Each sensor specializes in capturing certain types of damage, feeding into tailored deep
learning models to enhance detection accuracy over traditional single-sensor systems. Liu
et al. [5] develop a lightweight computer-vision framework for sewer inspection that mar-
ries defect detection and 3D reconstruction. Their Sewer-YOLO-Slim model prunes
YOLOV7-tiny to achieve high accuracy (mAP = 93.5%) while reducing model size and
computation, enabling real-time edge deployment. They add spatial context via multi-
view 3D modeling built from robot-captured images. Yang et al. [6] demonstrate that Ti-
nyML can be deployed on miniature in-pipe robots using an ESP32 microcontroller. Their
five-layer CNN achieves 97.1% feature detection accuracy with minimal RAM (195 kB)
and flash usage, showcasing how embedded ML can enable autonomous on-device
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inspection under tight resource constraints. Ha et al. [7] annotate 14.7 km of sewer im-
agery, then use EfficientDet-DO to detect defects. Their system achieves 83% detection ac-
curacy, and importantly, the system architecture addresses practical challenges in defect
annotation and training for real-world conditions—including rare but critical severe de-
fects.

The PLIERS system [8] employs an IoT-enabled swarm of robots that traverse emp-
tied sewer and water pipes, capture crack images, and communicate with a cloud-hosted
CNN for crack detection and severity assessment. Their architecture demonstrates multi-
robot coordination, onboard imaging, and centralized analysis showing one way to scale
inspection via robotics and IoT. Antonini et al. [9] propose a fully adaptable edge-based
anomaly detection system combining IoT, edge computing, and TinyML. Though not
sewer-specific, the architecture aligns with embedded, networked sensing systems and
offers a blueprint for future modular sewer inspection nodes. Utepov et al. [10] proposes
an LSMF (Live-Feed Sewer Monitoring Framework) that stitches together continuous
video streaming, real-time analysis, and alerting —laying a blueprint for live, end-to-end
monitoring systems. Otero et al. [11] applies SSL to sewer video data, achieving competi-
tive defect detection with models five times smaller and using just 10% of labeled data,
highlighting promise in resource-constrained or data-limited contexts.

These diverse system-level studies reflect important advances sensor fusion, embed-
ded inference, robotics, live monitoring, and data-efficient learning. However, a compact,
battery-powered, autonomous node that performs on-device defect detection and lever-
ages low-power IoT (e.g., LoRa) for transmitting summarized alert data remains underex-
plored.

The proposed system consists of:

e  TinyML vision model for embedded microcontrollers,
e  Low-power LoRa connectivity,

3. Proposed Method
3.1. System Architecture

Figure 1 provides an isometric illustration of the proposed system architecture. Each
monitoring node consists of a low-power microcontroller with an integrated camera (e.g.,
an SenseCAP K1101), a LoRa radio module, a lithium battery and high-intensity LEDs for
illumination. The camera captures images of the pipe interior at periodic intervals (e.g.,
every 30 s or triggered by motion). Images are fed into a TinyML model running on the
microcontroller. If the model detects a defect, the device packages the inference result
(fault type and confidence) with a timestamp and transmits it via LoRa to a gateway node
located above ground. The gateway collects data from multiple devices and forwards it to
a cloud service or municipal asset management system for visualization and maintenance
scheduling. Between inference cycles the device enters deep sleep to conserve energy,
waking briefly to capture and process new images.

S —— | - —_—

Figure 1. Proposed System Architecture.
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A LoRa network can work in sewer pipelines, but only in certain conditions. Signals
don't travel well through soil, concrete, and water, so sensors placed deep inside pipes
usually can’t talk directly to a surface gateway. The common solution is to install repeaters
or gateways in manholes, the in-pipe sensor sends a short LoRa signal to the nearest man-
hole unit, and that unit forwards the data up to the surface gateway, which then relays it
to the cloud or a dashboard. In practice, this means LoRa is reliable for short underground
hops (10-50 m) and when manholes are used as communication points, but it doesn’t
work well over long stretches of buried pipe without access shafts.

A compact sensor node (SenseCAP K1101), as shown in Figure 2, with an on-board
camera and LoRa transceiver is mounted inside the pipe. The node in the pipe, captures
images, runs an on-device classifier and sends defect alerts to a gateway for remote mon-

itoring.

Figure 2. SenseCAP K1101 (Wio Terminal + Vision Al Sensor + LoRa Module).

The key design considerations for such a system include low power consumption,
robust communications and autonomy:

e  Low power: Devices are powered by lithium batteries and must operate for months
or years without replacement. The microcontroller uses deep sleep modes, and the
TinyML to reduce memory and computational requirements. Only inference results
are transmitted, minimizing radio usage.

¢ Long-range communication: LoRa provides multi-kilometre range at low data rates,
enabling devices to communicate from underground pipelines to surface gateways
without relying on cellular or Wi-Fi coverage.

3.2. Dataset Preparation

To develop the classification model, a dataset of sewer pipe images is used and la-
belled in two key defect classes utility intrusions and trash blockages. This formulation
reflects both practical deployment constraints on embedded hardware and the need to
target the most operationally relevant conditions in sewer maintenance.

The dataset was derived primarily from the publicly available Sewer-ML dataset [12],
which contains over one million annotated images across a wide range of sewer defects.
From this large corpus, we extracted a balanced subset comprising:
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e 10,000 images of intrusions (Figure 3), where roots or foreign objects penetrate the
pipe walls.

e 10,000 images grouped from all other visually observable defect categories. This in-
cluded debris blockages, cracks, joint offsets, holes, structural buckling, surface de-
posits, and minor deformations. These were unified under a single “trash” (Figure 4)
label to represent obstructive or non-intrusion conditions that still degrade hydraulic
capacity or inspection quality.

e 10,000 normal (non-defective) images used as a control group for contrastive train-
ing.

Figure 4. TinyML Model Architecture.

Each image carried a single label corresponding to one of the three categories (intru-
sion, trash, or normal). Since the primary deployment target is on-device classification,
the final formulation was kept as a multi-class problem, with each input assigned exclu-
sively to one class. The dataset was randomly divided into 60% training, 20% validation,
and 20% testing, ensuring balanced representation of both defect types across splits.

3.3. Model Development

The classification network is based on MobileNetV2 with a reduced width multiplier
(o =10.35) and input resolution of 96 x 96 pixels to keep the model lightweight for embed-
ded deployment. The backbone uses depthwise separable convolutions and inverted re-
sidual blocks, which significantly reduce parameter count while retaining representa-
tional power. The model architecture is shown in Figure 5.
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Figure 5. TinyML Model Architecture.

From the truncated base model, we extract intermediate features and pass them
through a global average pooling layer. This is followed by batch normalization and drop-
out (0.25) for regularization. A dense layer with 160 neurons and ReLU activation is added
to widen the feature space, also regularized with L2 penalty. After another round of batch
normalization and dropout, the network ends with a softmax output layer corresponding
to the target classes (intrusion, trash, normal).

This architecture achieves a balance between compact size and sufficient depth, mak-
ing it suitable for on-device inference on microcontrollers with tight memory and compute
budgets.

4. Results and Discussion

The proposed MobileNetV2-based model achieved strong performance on both val-
idation and test datasets. The validation accuracy reached 91.6%, while the test accuracy
was 91.4%, demonstrating consistent generalization across unseen data.

The confusion matrix (Figure 6) summarizes classification outcomes for the three
classes (intrusion, trash, normal). Most predictions were correct, with only a small fraction
of misclassifications, primarily between intrusion and trash due to overlapping visual fea-
tures.
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Figure 6. Confusion Matrix (Test Dataset).

The test set confusion matrix (Figure 3) highlights both the strengths and remaining
challenges of the model. Intrusion was correctly classified in 90.0% of cases, with most
errors being misclassified as trash. Trash achieved a 91.8% recall, indicating the model
effectively captured diverse visual patterns of blockages and foreign objects, although pre-
cision was slightly lower due to occasional confusion with intrusion samples. Normal im-
ages achieved the highest recall (92.4%) and precision (92.3%), showing that the model
robustly distinguished defect-free sewer conditions. The per-class metrics further validate
the balanced performance:

Table 1. Classification performance of the defect detection model on the test set.

Class Precision Recall F1-Score
Intrusion 0.918 0.900 0.909
Trash 0.901 0.918 0.909
Normal 0.923 0.924 0.924
Accuracy 0.914

The macro-averaged F1-score of 0.914 demonstrates the model’s ability to generalize
across all categories, without a strong bias toward any single class. The small differences
in precision and recall across intrusion and trash suggest that these two classes share over-
lapping visual features, such as irregular textures or debris-like patterns.

5. Conclusions and Future Work

This paper presented a scalable fault detection and condition assessment system for
sewer networks based on embedded machine vision and TinyML. The system employs
low-power sensor nodes that capture images, run a quantized MobileNetV2 model on a
microcontroller, and send defect alerts via LoRa to a gateway. Leveraging transfer learn-
ing and data augmentation, the model achieved 91.4% test accuracy on a dataset. By au-
tomating sewer inspection and shifting analysis to the edge, the proposed system ad-
dresses the limitations of manual CCTV surveys and resource-intensive deep learning
pipelines. It enables more frequent inspections, early detection of defects and proactive
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maintenance, thereby reducing the risk of catastrophic failures and environmental con-
tamination. The research underscores the importance of curated datasets, energy-efficient
models and robust communication for deploying Al in constrained environments.

Future work will expand the model’s capabilities to detect distinct defect classes and
perform instance segmentation. Deployment in real sewer networks will enable us to eval-
uate long-term performance, battery life and communication reliability. Ultimately, the
integration of embedded machine vision into infrastructure management promises to en-
hance the sustainability and resilience of urban sewer systems.
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