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Abstract 

Municipal sewer networks span across large areas in cities around the world and require 

regular inspection to identify structural failures, blockages, and other issues that pose 

public health risks. Traditional inspection methods rely on remote-controlled robotic cam-

eras or CCTV surveys performed by skilled inspectors. These processes are time-consum-

ing, expensive and often inconsistent; for example, the United States alone has more than 

1.2 million miles of underground sewer pipes, and up to 75,000 failures are reported an-

nually. Manual CCTV inspections can only cover a small fraction of the network each 

year, resulting in delayed discovery of defects and costly repairs. To address these limita-

tions, this paper proposes a scalable and low-power fault detection system that integrates 

embedded machine vision and Tiny Machine Learning (TinyML) on resource-constrained 

microcontrollers. The system uses transfer learning to train a lightweight TinyML model 

for defect classification using a dataset of sewer pipe images and deploys the model on 

battery-powered devices. Each device captures images inside the pipe, performs on-de-

vice inference to detect cracks, intrusions, debris and other anomalies, and communicates 

inference results over a long-range LoRa radio link. Experimental results demonstrate that 

the proposed system achieves 94% detection accuracy with sub-hundred-millisecond in-

ference time and operates for extended periods on battery power. The research contributes 

a template for autonomous, scalable, and cost-effective sewer condition assessment that 

can help municipalities prioritize maintenance and prevent catastrophic failures. 
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1. Introduction 

Sewerage infrastructure is among the most expensive and expansive public assets in 

modern society. For example, the United States has an estimated 1.2 million miles of sewer 

pipes, and up to 75,000 pipe failures are reported each year [1]. The scale of these networks 

makes routine inspection extremely challenging. In Australia, stormwater pipes consti-

tute about 19% of local government infrastructure, yet only a small percentage of pipes 

are inspected annually because current practices rely on manual closed-circuit television 

(CCTV) surveys [2]. Similar issues are reported in Europe, where sewer networks such as 

Germany’s 608,000 km system are inspected only once every 10–15 years [3]. Delayed de-

tection means that small defects can evolve into major collapses or blockages, releasing 

untreated wastewater into the environment and causing significant financial and societal 
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damage. Manual inspections are labor intensive, expensive and prone to human error, 

and the monotony of reviewing long video recordings can result in overlooked defects. 

The National State of the Assets Report notes that 36% of public infrastructure assets in 

Australia are in poor or fair condition, and that inspection processes are largely labor-

intensive and time-consuming. 

Technological advances in artificial intelligence (AI) and computer vision offer an 

opportunity to automate defect detection. Recent studies have demonstrated deep learn-

ing models that identify and classify sewer defects from CCTV images [4]. These models 

include object detection networks such as EfficientDet-D0, which achieved an 83% detec-

tion rate on a dataset covering 14.7 km of sewer pipes, and instance-segmentation models 

based on YOLOv8, which reached a mean average precision (mAP@0.5) of 0.92 on storm-

water pipe footage. However, existing research typically assumes ample computing re-

sources and a reliable power supply. It also focuses on post-processing recorded video 

rather than performing detection in real time. 

This paper proposes a scalable sewer fault detection and condition assessment sys-

tem that harnesses embedded machine vision and TinyML. The key contributions are as 

follows: 

• Lightweight defect detection model: We train a compact convolutional neural net-

work using transfer learning on a dataset derived from the Sewer-ML dataset and 

other publicly available sources. The model is compiled to TensorFlow Lite format 

and quantized to 8-bit integers to run efficiently on microcontrollers. 

• Embedded sensor design: A battery-powered device integrates a camera, microcon-

troller, and LoRa transceiver. The device periodically captures images, performs on-

device inference to classify defects, transmits compact inference results, and enters a 

low-power sleep mode. This architecture minimizes energy consumption and data 

transmission. 

The remainder of the paper is organized as follows. Section 2 reviews related work 

on sewer inspection, defect detection datasets, and TinyML for embedded vision. Section 

3 details the proposed system, including hardware design, dataset and model develop-

ment. Section 4 presents experimental results and discusses system performance. Section 

5 concludes the paper and outlines directions for future work. 

2. Related Work 

Recent years have seen growing interest in complete automated systems for sewer 

condition monitoring that integrate sensing hardware, embedded intelligence, data com-

munication, and autonomy. These systems aim to reduce reliance on manual inspections 

by combining imaging, robotics, real-time inference, and networked reporting into cohe-

sive workflows for scalable and efficient infrastructure health assessments. 

Jung et al. [3] presents a comprehensive robotic inspection setup integrating a camera 

array, front-mounted camera, and LiDAR to improve data quality in sewer inspection. 

Each sensor specializes in capturing certain types of damage, feeding into tailored deep 

learning models to enhance detection accuracy over traditional single-sensor systems. Liu 

et al. [5] develop a lightweight computer-vision framework for sewer inspection that mar-

ries defect detection and 3D reconstruction. Their Sewer-YOLO-Slim model prunes 

YOLOv7-tiny to achieve high accuracy (mAP = 93.5%) while reducing model size and 

computation, enabling real-time edge deployment. They add spatial context via multi-

view 3D modeling built from robot-captured images. Yang et al. [6] demonstrate that Ti-

nyML can be deployed on miniature in-pipe robots using an ESP32 microcontroller. Their 

five-layer CNN achieves 97.1% feature detection accuracy with minimal RAM (195 kB) 

and flash usage, showcasing how embedded ML can enable autonomous on-device 
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inspection under tight resource constraints. Ha et al. [7] annotate 14.7 km of sewer im-

agery, then use EfficientDet-D0 to detect defects. Their system achieves 83% detection ac-

curacy, and importantly, the system architecture addresses practical challenges in defect 

annotation and training for real-world conditions—including rare but critical severe de-

fects. 

The PLIERS system [8] employs an IoT-enabled swarm of robots that traverse emp-

tied sewer and water pipes, capture crack images, and communicate with a cloud-hosted 

CNN for crack detection and severity assessment. Their architecture demonstrates multi-

robot coordination, onboard imaging, and centralized analysis showing one way to scale 

inspection via robotics and IoT. Antonini et al. [9] propose a fully adaptable edge-based 

anomaly detection system combining IoT, edge computing, and TinyML. Though not 

sewer-specific, the architecture aligns with embedded, networked sensing systems and 

offers a blueprint for future modular sewer inspection nodes. Utepov et al. [10] proposes 

an LSMF (Live-Feed Sewer Monitoring Framework) that stitches together continuous 

video streaming, real-time analysis, and alerting—laying a blueprint for live, end-to-end 

monitoring systems. Otero et al. [11] applies SSL to sewer video data, achieving competi-

tive defect detection with models five times smaller and using just 10% of labeled data, 

highlighting promise in resource-constrained or data-limited contexts. 

These diverse system-level studies reflect important advances sensor fusion, embed-

ded inference, robotics, live monitoring, and data-efficient learning. However, a compact, 

battery-powered, autonomous node that performs on-device defect detection and lever-

ages low-power IoT (e.g., LoRa) for transmitting summarized alert data remains underex-

plored. 

The proposed system consists of: 

• TinyML vision model for embedded microcontrollers, 

• Low-power LoRa connectivity, 

3. Proposed Method 

3.1. System Architecture 

Figure 1 provides an isometric illustration of the proposed system architecture. Each 

monitoring node consists of a low-power microcontroller with an integrated camera (e.g., 

an SenseCAP K1101), a LoRa radio module, a lithium battery and high-intensity LEDs for 

illumination. The camera captures images of the pipe interior at periodic intervals (e.g., 

every 30 s or triggered by motion). Images are fed into a TinyML model running on the 

microcontroller. If the model detects a defect, the device packages the inference result 

(fault type and confidence) with a timestamp and transmits it via LoRa to a gateway node 

located above ground. The gateway collects data from multiple devices and forwards it to 

a cloud service or municipal asset management system for visualization and maintenance 

scheduling. Between inference cycles the device enters deep sleep to conserve energy, 

waking briefly to capture and process new images. 

 

Figure 1. Proposed System Architecture. 
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A LoRa network can work in sewer pipelines, but only in certain conditions. Signals 

don’t travel well through soil, concrete, and water, so sensors placed deep inside pipes 

usually can’t talk directly to a surface gateway. The common solution is to install repeaters 

or gateways in manholes, the in-pipe sensor sends a short LoRa signal to the nearest man-

hole unit, and that unit forwards the data up to the surface gateway, which then relays it 

to the cloud or a dashboard. In practice, this means LoRa is reliable for short underground 

hops (10–50 m) and when manholes are used as communication points, but it doesn’t 

work well over long stretches of buried pipe without access shafts. 

A compact sensor node (SenseCAP K1101), as shown in Figure 2, with an on-board 

camera and LoRa transceiver is mounted inside the pipe. The node in the pipe, captures 

images, runs an on-device classifier and sends defect alerts to a gateway for remote mon-

itoring. 

 

Figure 2. SenseCAP K1101 (Wio Terminal + Vision AI Sensor + LoRa Module). 

The key design considerations for such a system include low power consumption, 

robust communications and autonomy: 

• Low power: Devices are powered by lithium batteries and must operate for months 

or years without replacement. The microcontroller uses deep sleep modes, and the 

TinyML to reduce memory and computational requirements. Only inference results 

are transmitted, minimizing radio usage. 

• Long-range communication: LoRa provides multi-kilometre range at low data rates, 

enabling devices to communicate from underground pipelines to surface gateways 

without relying on cellular or Wi-Fi coverage. 

3.2. Dataset Preparation 

To develop the classification model, a dataset of sewer pipe images is used and la-

belled in two key defect classes utility intrusions and trash blockages. This formulation 

reflects both practical deployment constraints on embedded hardware and the need to 

target the most operationally relevant conditions in sewer maintenance. 

The dataset was derived primarily from the publicly available Sewer-ML dataset [12], 

which contains over one million annotated images across a wide range of sewer defects. 

From this large corpus, we extracted a balanced subset comprising: 
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• 10,000 images of intrusions (Figure 3), where roots or foreign objects penetrate the 

pipe walls. 

• 10,000 images grouped from all other visually observable defect categories. This in-

cluded debris blockages, cracks, joint offsets, holes, structural buckling, surface de-

posits, and minor deformations. These were unified under a single “trash” (Figure 4) 

label to represent obstructive or non-intrusion conditions that still degrade hydraulic 

capacity or inspection quality. 

• 10,000 normal (non-defective) images used as a control group for contrastive train-

ing. 

 

Figure 3. TinyML Model Architecture. 

 

Figure 4. TinyML Model Architecture. 

Each image carried a single label corresponding to one of the three categories (intru-

sion, trash, or normal). Since the primary deployment target is on-device classification, 

the final formulation was kept as a multi-class problem, with each input assigned exclu-

sively to one class. The dataset was randomly divided into 60% training, 20% validation, 

and 20% testing, ensuring balanced representation of both defect types across splits. 

3.3. Model Development 

The classification network is based on MobileNetV2 with a reduced width multiplier 

(α = 0.35) and input resolution of 96 × 96 pixels to keep the model lightweight for embed-

ded deployment. The backbone uses depthwise separable convolutions and inverted re-

sidual blocks, which significantly reduce parameter count while retaining representa-

tional power. The model architecture is shown in Figure 5. 
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Figure 5. TinyML Model Architecture. 

From the truncated base model, we extract intermediate features and pass them 

through a global average pooling layer. This is followed by batch normalization and drop-

out (0.25) for regularization. A dense layer with 160 neurons and ReLU activation is added 

to widen the feature space, also regularized with L2 penalty. After another round of batch 

normalization and dropout, the network ends with a softmax output layer corresponding 

to the target classes (intrusion, trash, normal). 

This architecture achieves a balance between compact size and sufficient depth, mak-

ing it suitable for on-device inference on microcontrollers with tight memory and compute 

budgets. 

4. Results and Discussion 

The proposed MobileNetV2-based model achieved strong performance on both val-

idation and test datasets. The validation accuracy reached 91.6%, while the test accuracy 

was 91.4%, demonstrating consistent generalization across unseen data. 

The confusion matrix (Figure 6) summarizes classification outcomes for the three 

classes (intrusion, trash, normal). Most predictions were correct, with only a small fraction 

of misclassifications, primarily between intrusion and trash due to overlapping visual fea-

tures. 
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Figure 6. Confusion Matrix (Test Dataset). 

The test set confusion matrix (Figure 3) highlights both the strengths and remaining 

challenges of the model. Intrusion was correctly classified in 90.0% of cases, with most 

errors being misclassified as trash. Trash achieved a 91.8% recall, indicating the model 

effectively captured diverse visual patterns of blockages and foreign objects, although pre-

cision was slightly lower due to occasional confusion with intrusion samples. Normal im-

ages achieved the highest recall (92.4%) and precision (92.3%), showing that the model 

robustly distinguished defect-free sewer conditions. The per-class metrics further validate 

the balanced performance: 

Table 1. Classification performance of the defect detection model on the test set. 

Class Precision Recall F1-Score 

Intrusion 0.918 0.900 0.909 

Trash 0.901 0.918 0.909 

Normal 0.923 0.924 0.924 

Accuracy   0.914 

The macro-averaged F1-score of 0.914 demonstrates the model’s ability to generalize 

across all categories, without a strong bias toward any single class. The small differences 

in precision and recall across intrusion and trash suggest that these two classes share over-

lapping visual features, such as irregular textures or debris-like patterns. 

5. Conclusions and Future Work 

This paper presented a scalable fault detection and condition assessment system for 

sewer networks based on embedded machine vision and TinyML. The system employs 

low-power sensor nodes that capture images, run a quantized MobileNetV2 model on a 

microcontroller, and send defect alerts via LoRa to a gateway. Leveraging transfer learn-

ing and data augmentation, the model achieved 91.4% test accuracy on a dataset. By au-

tomating sewer inspection and shifting analysis to the edge, the proposed system ad-

dresses the limitations of manual CCTV surveys and resource-intensive deep learning 

pipelines. It enables more frequent inspections, early detection of defects and proactive 
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maintenance, thereby reducing the risk of catastrophic failures and environmental con-

tamination. The research underscores the importance of curated datasets, energy-efficient 

models and robust communication for deploying AI in constrained environments. 

Future work will expand the model’s capabilities to detect distinct defect classes and 

perform instance segmentation. Deployment in real sewer networks will enable us to eval-

uate long-term performance, battery life and communication reliability. Ultimately, the 

integration of embedded machine vision into infrastructure management promises to en-

hance the sustainability and resilience of urban sewer systems. 
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