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Abstract

Accurate real-time monitoring of cattle behavior is essential for enabling data-driven
decision-making in precision livestock farming. However, existing monitoring solutions
often rely on cloud-based processing or high-power hardware, which are impractical
for deployment in remote or low-infrastructure agricultural environments. There is a
critical need for low-cost, energy-efficient, and autonomous sensing systems capable of
operating independently at the edge. This paper presents a compact, sensor-integrated
system for real-time cattle behavior monitoring using an embedded vision sensor and
a TinyML-based inference pipeline. The system is designed for low-power deployment
in field conditions and integrates the OV2640 image sensor with the Sipeed Maixduino
platform, which features the Kendryte K210 RISC-V processor and an on-chip neural
network accelerator (KPU). The platform supports fully on-device classification of cattle
postures using a quantized convolutional neural network trained on the publicly available
cattle behavior dataset, covering standing and lying behavioral states. Sensor data is
captured via the onboard camera and preprocessed in real time to meet model input
specifications. The trained model is quantized and converted into a K210-compatible
.kmodel using the NNCase toolchain, and deployed using MaixPy firmware. System
performance was evaluated based on inference latency, classification accuracy, memory
usage, and energy efficiency. Results demonstrate that the proposed TinyML-enabled
system can accurately classify cattle behaviors in real time while operating within the
constraints of a low-power, embedded platform, making it a viable solution for smart
livestock monitoring in remote or under-resourced environments.

Keywords: precision livestock farming; TinyML; embedded vision; Kendryte K210;
YOLOvV2; MobileNet; on-device inference; Edge Al cattle behavior monitoring; low-power
sensing

1. Introduction

Precision Livestock Farming (PLF) represents a data-centric evolution in agricultural
science, aiming to optimise both production efficiency and animal welfare through con-
tinuous, automated monitoring of individual animals [1]. The core premise of PLF is that
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high-resolution, real-time behavioural data empowers farm managers to make proactive,
evidence-based decisions. In particular, deviations in diurnal activity patterns such as lying,
standing, feeding, and ruminating, often serve as early indicators of metabolic disorders,
physical distress, lameness, or critical production events like estrus and parturition. Early
PLF systems largely depended on labor-intensive visual observations. Subsequently, de-
vices embedded with accelerometers and GPS have been extensively studied for tracking
activity levels and pasture utilisation [2]. More recently, computer vision has emerged
as a compelling, non-invasive sensing modality. A single vision sensor can in principle
not only determine posture but also identify individuals, assess body condition scores,
monitor social interactions, and evaluate engagement with farm infrastructure such as
feeders or water troughs. However, the widespread application of vision-based PLF has
been constrained by significant computational requirements [3,4]. This computational
barrier gives rise to Tiny Machine Learning (TinyML), a growing subfield of Al focused on
executing inference pipelines directly on low-power, resource-constrained microcontrollers
(MCUs) [5]. TinyML achieves this through efficient model architectures, advanced com-
pression techniques like post-training quantization, pruning, and model distillation, and
increasingly capable specialized hardware. Notably, post-training quantization, converting
32-bit floating-point parameters into 8-bit integers (INT8), dramatically reduces model size
and enhances inference speed on compatible hardware with minimal loss in accuracy. The
emergence of low-cost embedded Al platforms, such as the Kendryte K210 SoC with its in-
tegrated KPU (Neural Network Accelerator), represents a critical inflection point [6]. These
platforms facilitate efficient, on-device execution of quantized models making complex
visual inference feasible at the deep edge, with just a few dollars in cost and milliwatts
of power consumption [7]. The K210 and its underlying RISC-V architecture have seen
diverse applications ranging from waste monitoring and face mask detection to precision
agriculture and traffic management [8-10]. In the realm of livestock monitoring specifically,
several studies have explored TinyML-based approaches, including systems focused on
cattle behavior recognition, on-device feeding analysis, and multi-modal sensing [11-18].

In this paper, we present a compact, sensor-integrated TinyML system for real-time
cattle behavior monitoring, leveraging an embedded vision pipeline with an OV2640
camera module and the Sipeed Maixduino platform (Kendryte K210). The system executes
a quantized convolutional neural network (CNN) model directly on the edge, enabling
autonomous in-field behavior classification with low latency, low memory footprint, and
minimal energy usage. The contribution of this paper are:

1.  We demonstrate the feasibility of deploying a quantized YOLOv2-MobileNet_0.75
model on the K210 for real-time livestock behavior detection (standing, eating, drink-
ing, sitting).

2. We characterize system performance in terms of inference latency, memory usage,
and detection confidence under class imbalance conditions.

2. Materials and Methods
2.1. Dataset and Preprocessing

The study utilized a publicly available dataset of cattle behavior with four annotated
classes: standing, eating, drinking, and sitting. The raw dataset initially contained
1488 annotated samples, which were automatically split into 1460 training samples and
28 validation samples using a 90/10 split. To address class imbalance, data balancing was
applied by oversampling minority classes (drinking and sitting), resulting in a final
training set of 3388 images and a validation set of 28 images. Each image was resized to
224 x 224 pixels and standardized with mean (¢ = 123.5) and standard deviation (¢ = 58.4).
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Although augmentation options such as rotation, mirroring, and blur were available, they
were disabled in this experiment.

2.2. Model Architecture and Training

A transfer learning approach was adopted, using YOLOV?2 as the detection framework
with a MobileNet_0.75 backbone pretrained on ImageNet. The model was implemented on
the nncase platform and trained for 100 epochs with a batch size of 16 and a learning rate of
0.001. The minimum bounding box size was set to 10 pixels, and negative data samples were
included to improve robustness. In this context, “negative data” refers to images without
annotated targets. If some images contain unlabeled target objects, negative data must be
disabled to avoid the risk of treating true objects as false detections. Conversely, when all
objects of interest are fully annotated, enabling negative data allows the inclusion of empty
scenes containing no target objects, thereby improving the model’s ability to discriminate
between relevant and irrelevant inputs. Anchor clustering was performed on the dataset,
producing five anchor shapes with width—height ratios [0.49,0.77,1.18,1.40,1.44] and an
Intersection over Union (IoU) accuracy of 76.7%. The final network consisted of 1.87M
parameters, of which 34,605 were trainable and the remainder frozen, ensuring suitability
for quantization and embedded deployment.

2.3. Embedded Deployment Pipeline

The trained model was quantized and converted into a K210-compatible .kmodel
file using the NNCase toolchain. Deployment was conducted on the Sipeed Maixduino
development board, which integrates the Kendryte K210 RISC-V processor. The K210
features a dual-core CPU and a dedicated neural network accelerator (KPU, K210 Pro-
cessing Unit) capable of real-time CNN inference at low power. The inference pipeline
was implemented in MaixPy, enabling direct execution of quantized CNN models without
external dependencies. Figure 1 shows the image of the board used.

Figure 1. The Sipeed Maixduino.

2.4. Sensor and Hardware Integration

For visual sensing, the system employed the OV2640 CMOS image sensor, a compact 2-
megapixel module widely used in embedded vision tasks due to its low power consumption
and configurable output formats (RGB565, YUV422, JPEG). The sensor was interfaced with
the Maixduino via an 8-bit DVP (Digital Video Port), providing real-time image capture at
frame rates suitable for behavior monitoring. Peripheral components included onboard
SRAM for buffer management and an SD card interface for optional dataset logging. The
compact design allowed for autonomous operation in resource-constrained environments
without requiring external computation or cloud connectivity.

2.5. System Workflow

The end-to-end pipeline is illustrated in Figure 2. Captured frames from the OV2640
sensor were preprocessed on-device to match the CNN input requirements (224 x 224).
The quantized YOLOv2-MobileNet model, executed on the KPU, performed bounding box
regression and classification in real time. Detection outputs were evaluated against ground
truth annotations (white boxes), with green boxes indicating correct predictions and red
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boxes marking false detections, to enable continuous monitoring of cattle behavior directly
at the edge device without reliance on cloud services or high-power hardware.
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Figure 2. End-to-end embedded pipeline.

3. Results and Discussion

Model predictions were evaluated using annotated bounding boxes (white), predicted boxes
(green), and incorrect detections (red). Correct detections occurred when predicted boxes
overlapped with annotated targets, even if not all instances were recognized. As shown in
Figure 3, the model successfully identified multiple behaviors (standing, eating, sitting,
drinking) with high confidence scores (0.9-1.0). However, cases of misclassification and
partial recognition were observed, especially in crowded scenes or low-light conditions,
where multiple animals overlapped or when visibility was reduced.
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L

Figure 3. Sample Predictions of the Trained Model.

Figure 4 illustrates the loss and accuracy curves over 100 epochs. The training loss
decreased rapidly within the first 20 epochs and stabilized around 0.1, indicating effective
convergence. Validation accuracy improved steadily, reaching approximately 0.85, which
suggests that the model generalized well to unseen data. The best test set performance
was achieved at epoch 80, with an accuracy of 0.875, highlighting the point of optimal
generalization before minor fluctuations were observed in later epochs.

The model demonstrated reliability in detecting eating and sitting behaviors, which
were represented with stronger annotation counts in the training set. Drinking was the
most challenging category, with lower confidence predictions and higher misclassification
rates, likely due to fewer training samples and higher visual similarity with standing.
Furthermore, the use of balanced oversampling allowed minority classes such as drinking
to be recognized, but some false positives remained, as indicated by red boxes in Figure 3.
Complex environments such as night lighting and occlusion still introduced errors.
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Figure 4. The Learning Curve.

3.1. On-Device Inference with Sipeed Maixduino

To demonstrate the real-time deployment, the quantized .kmodel was executed on
the Sipeed Maixduino board. Figure 5 illustrates representative inference results captured
directly from the device output display. The system detected cattle behaviors such as
standing and eating with confidence levels ranging from 0.6 to 0.9. The bounding boxes
were rendered directly by the device, confirming that the complete pipeline from image
acquisition using the OV2640 sensor to preprocessing, inference, and visualization, operated
fully on-device without external computation. Performance remained robust even under
low-light conditions (left panel of Figure 5), though confidence values were slightly reduced
compared to daylight scenarios. In brighter environments, the system maintained stable
bounding box predictions and higher confidence scores.

Figure 5. On-device inference results from the Sipeed Maixduino board using the quantized YOLOv2-
MobileNet model. Cattle behaviors such as standing and eating were detected in real time with
confidence scores between 0.6 and 0.9.

3.2. Detection Performance

The detection results covered four cattle behavior classes: Standing, Eating, Drinking,
and Sitting. Table 1 summarizes the detection frequency and confidence values.
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Table 1. Detection performance across behavior classes.

Class Total Detections Avg. Score Max Score Min Score
Standing 1484 0.78 0.99 0.50
Eating 606 0.82 0.98 0.51
Drinking 22 0.77 0.96 0.59
Sitting 6 0.62 0.77 0.54

As shown, Standing was the most frequently detected behavior, followed by Eating. Both
classes achieved high confidence scores, with averages above 0.78. By contrast, under-
represented behaviors such as Drinking and especially Sitting yielded fewer detections
and lower confidence values. This reflects the dataset imbalance, where more common
behaviors dominate the predictions and less frequent ones are harder to detect reliably.
Inference metrics were collected from deployment on the Sipeed Maixduino board. Table 2
presents the summary statistics.

Table 2. Summary of inference performance on Sipeed Maixduino (K210).

Metric Average Range
Latency (ms) 35.0 34-37
Memory Allocated (bytes) 350,427 —
Memory Free (bytes) 167,717 —

Detections per Frame 2.18 —

The system maintained stable real-time performance, with an average inference la-
tency of 35 ms per frame, corresponding to approximately 28-30 frames per second (FPS).
Memory usage remained efficient, with an average of 350 kB allocated and 168 kB free, con-
firming that the quantized YOLOv2-MobileNet model fits comfortably within the K210’s
constraints. On average, the system detected about two cattle per frame, consistent with the
multi-animal monitoring scenario. On the hardware side, the deployment on the Maixduino
platform proved successful, achieving real-time inference with low latency and modest
memory usage. These results validate the suitability of the proposed TinyML-enabled
system for autonomous cattle behavior monitoring at the edge, without reliance on cloud
services or high-power computing infrastructure.

4. Conclusions

The YOLOv2 + MobileNet_0.75 transfer learning framework demonstrated strong
detection performance, with validation accuracy stabilizing at approximately 85%. These
results highlight the suitability of the approach for real-time livestock monitoring on
resource-constrained embedded platforms. Nevertheless, there remain opportunities for
improvement. Future work could incorporate more advanced data augmentation tech-
niques, such as brightness adjustment and affine transformations, to enhance robustness
against variable lighting and environmental conditions. In addition, expanding the dataset,
particularly with greater representation of under-sampled behaviors such as drinking,
would help address class imbalance and improve generalization. Further gains may also
be achieved by exploring anchor-free detection architectures such as YOLOv5 or YOLOVS,
which are known to provide better adaptability in cluttered or dynamic environments.
By addressing these aspects, the system can be further refined to reduce false positives,
enhance classification consistency, and improve its reliability as a practical solution for
precision livestock farming applications.
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