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Abstract 

Voice acoustics have been extensively investigated as potential non-invasive markers for 

Autism Spectrum Disorder (ASD). Although many studies report high accuracies, they 

typically rely on highly controlled clinical protocols that reduce linguistic variability. 

Their data is also recorded using specialized microphone arrays that ensure high quality 

recordings. Such dependencies limit their applicability in real-world or in-home screening 

contexts. In this work, we explore an alternative approach designed to reflect the require-

ments of mobile-based applications that could assist parents in monitoring their children. 

We use an open-access dataset of naturalistic storytelling, extracting only the speech seg-

ments in which the child is speaking. We applied previously published ASD voice-analy-

sis pipelines to this dataset which yielded suboptimal performance under these less con-

trolled conditions. We then introduce a deep learning–based method that learns discrim-

inative representations directly from raw audio, eliminating the need for manual feature 

extraction while being more robust to environment noise. This approach achieves an ac-

curacy of up to 77% in classifying children with ASD, children with Attention Deficit Hy-

peractivity Disorder (ADHD), and neurotypical children. Frequency-band occlusion sen-

sitivity analysis on the deep model revealed that ASD speech relied more heavily on the 

2000–4000 Hz range, TD speech on both low (100–300 Hz) and high (4000–8000 Hz) bands, 

and ADHD speech on mid-frequency regions. These spectral patterns may help bring us 

closer to developing practical, accessible pre-screening tools for parents. 

Keywords: autism spectrum disorder; neurodevelopmental issues; vocal biomarkers; vo-

cal characteristics; voice analysis; deep neural networks; classification 

 

1. Introduction 

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that affects so-

cial communication and behavior, and early detection plays a critical role in improving 

intervention outcomes. Advances in speech and language technologies have encouraged 

research into the use of voice recorders as a non-invasive biometric sensor for screening 

ASD. While these findings are encouraging, most of these existing approaches have been 

developed and tested in controlled clinical or laboratory settings with specialized 
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microphone arrays, where participants follow standardized speech tasks and recordings 

are made under optimal acoustic conditions. 

The increasing availability of mobile devices offers the possibility of extending such 

analyses beyond clinical settings and into more natural, everyday contexts. In-home voice-

based screening could improve accessibility, reduce costs, and enable earlier identifica-

tion, particularly in regions where specialized diagnostic services are scarce. However, 

the variability of real-world data, which often includes background noise, spontaneous 

speech, and diverse recording conditions, presents significant challenges for methods 

originally designed for highly structured environments. 

The present study investigates whether voice analysis can be adapted to a more nat-

uralistic setting that reflects the conditions of in-home data collection, making the solution 

less sensitive to sensor technology as well as clinical setups. We focus on a storytelling-

based interaction scenario involving children from three diagnostic groups: ASD, Atten-

tion Deficit Hyperactivity Disorder (ADHD), and neurotypical controls. After evaluating 

the performance of established voice-analysis pipelines on this dataset, we introduce a 

deep learning approach capable of learning discriminative patterns directly from the au-

dio signal. The remainder of the paper is organized as follows: Section 2 reviews the liter-

ature on voice biomarkers; Section 3 describes the dataset and the methods used, includ-

ing both voice-biomarker-based approaches and deep learning; Section 4 presents and an-

alyzes the results; and Section 5 concludes the study. 

2. Literature Review 

Voice acoustics have recently attracted interest as non-invasive markers for ASD de-

tection, with consistent reports of atypical prosody, pitch modulation, and timing irregu-

larities as acoustic characteristics. Most studies follow a common pipeline including clean-

ing short speech segments, extracting hand-crafted acoustic descriptors, and training a 

conventional classifier, typically on binary ASD-versus-typically developing (TD) com-

parisons [1–7]. Within this paradigm, feature sets converge on perturbation and spectral 

measures such as jitter, shimmer, harmonic-to-noise ratio (HNR), formants and MFCCs. 

The choice of these features is mainly motivated by their interpretability in phonation sta-

bility and vocal tract [1,3,5]. Reported accuracies are frequently high in-sample (≈78–98%), 

but are sensitive to cohort size, elicitation task, language, and validation strategy [7,8]. 

Two representative studies [9,10] illustrate the methodological spectrum in this field, 

ranging from approaches that combine a broad set of engineered features with standard 

machine learning algorithms to those that rely on task-controlled elicitation protocols cou-

pled with a compact set of features designed for stability and robustness. Vacca et al. [9] 

employ a broad, engineered-feature approach in which child speech undergoes manual 

clipping, denoising, and pre-emphasis, followed by the extraction of more than 30 acous-

tic measures. These include F0, F1–F5, MFCCs, LPCCs, jitter, shimmer, harmonics-to-noise 

ratio (HNR), energy, and zero-crossing rate, computed on 20–30 ms frames. The resulting 

features are used to train several supervised classifiers such as SVM, Random Forest, Lo-

gistic Regression, and Naïve Bayes. This approach yields very high internal accuracy and 

precision/recall rates exceeding 98.8% for ASD detection, although the authors note typi-

cal threats to generalizability due to the small sample size and the high feature-to-sample 

ratio. In contrast, Briend et al. [10] used a task-controlled elicitation protocol consisting of 

a nonword-repetition task in order to minimize linguistic and pragmatic variability. They 

focus on a compact, physiologically grounded feature set comprising F0, F1–F4, formant 

dispersion, HNR, jitter, and shimmer. This set is augmented with distributional statistics 

such as skewness and kurtosis to capture intra-speaker variability. Using an unsupervised 

k-means procedure guided by ROC analysis and Monte-Carlo cross-validation, they 
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achieve strong discrimination between ASD, typically developing (TD) children, and a 

heterogeneous clinical control group. 

3. Framework 

This section presents the experimental framework, including a description of the da-

taset, the preprocessing procedures for voice biomarker extraction, and the deep learning 

approach. 

3.1. Dataset 

The dataset used in this study is drawn from the SK sub-corpus of the Asymmetries 

Project collection, compiled by Hendriks et al. [11,12] and available through the TalkBank 

[13] repository. It contains Dutch language productions collected in Groningen and 

nearby towns in the northern Netherlands. The SK sub-corpus includes 46 children with 

ASD, 37 with ADHD, and 38 typically developing (TD) children, with mean ages of 9 

years 3 months, 8 years 9 months, and 9 years, respectively. Boys constitute the majority 

in all groups (ASD: 87%, ADHD: 84%, TD: 66%). Data was recorded during structured 

storytelling sessions conducted individually at the University of Groningen. Clinical di-

agnoses for ASD and ADHD were confirmed using standardized and validated assess-

ment procedures. All sessions were recorded using an Olympus voice recorder in WMA 

format, and the files were transcribed and verified for coding consistency. The audio re-

cordings and transcripts are publicly available upon registration through the researchers’ 

website. 

3.2. Preprocessing 

For each participant, the dataset provides a long audio recording of the experimental 

session, accompanied by a corresponding cha annotation file. These annotations include 

precise timestamps indicating the periods when the child is speaking. To isolate the rele-

vant speech segments, we extracted and cropped the portions corresponding to the child’s 

speech, resulting in a set of short speech samples for each participant. 

3.3. Methodes 

3.3.1. Conventional Classifiers 

As previously discussed, voice biomarkers have been shown to be effective in the 

identification of autism. In order to investigate their utility in the context of developing a 

general screening tool, we extracted these features based on the methods reported in the 

aforementioned studies and used them to train classifiers to assess their effectiveness. In 

this section, we provide further details on the feature extraction process as well as the 

methods used for classifier training and testing. The conventional classifiers operate using 

the extracted features as input. 

(A) Voice biomarker extraction 

Acoustic features were computed in Python using Parselmouth (Praat) [14], NumPy, 

Pandas, and SciPy libraries. Each child-speech segment was analyzed after excluding files 

shorter than 1 s. Fundamental frequency was obtained with Praat’s autocorrelation pitch 

tracker with a 90–600 Hz search range; unvoiced frames were removed prior to analysis. 

Vowel resonances were estimated with Burg formant tracking [15] (time step 0.085 s, up 

to five formants, 5.5 kHz maximum), from which we derived mean F1–F4 and formant 

dispersion, defined as the average adjacent spacing among F1–F4. Harmonics-to-noise ra-

tio was computed from Praat’s harmonicity function with invalid values discarded. Jitter 

and shimmer were obtained from a pitch-synchronous point process using Praat’s local 

measures with standard parameterization. For each feature family we reported the mean 
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to capture central tendency and the skewness and kurtosis to capture intra-speaker distri-

butional shape. Features were exported as a CSV table with one row per segment and 

used to train and test classical classifiers for the three classes: ASD, ADHD, and TD. 

(B) Classification 

We first evaluated the extracted voice biomarkers using multiple conventional clas-

sifiers, including support vector machines (SVMs) [16], k-nearest neighbors (KNN) [17], 

Gradient Boosting [18], AdaBoost [19], and a fully connected multilayer perception (MLP) 

[20], in a three-class setting (ASD, ADHD, TD). Among these models, the SVM with a 

radial basis function (RBF) kernel achieved the highest and most consistent performance. 

Based on this result, we focused subsequent experiments on the SVM while incorporating 

different feature selection strategies to further optimize performance. Four approaches 

were compared within a nested cross-validation framework: no feature selection, univari-

ate ANOVA F-statistics [21], univariate mutual information [22], and an embedded L1-

regularized logistic regression selector [23]. The outer loop consisted of 10 folds for unbi-

ased performance estimation, and the inner loop used 5 folds for hyperparameter tuning 

via randomized search. Each pipeline applied standardization, feature selection, and SVM 

training within the inner loop to prevent train/test leakage. Model performance was eval-

uated using accuracy, precision, recall and Macro F1-scores as will be detailed in Section 

4. 

3.3.2. Deep Learning Approach 

Given the limitations of hand-crafted voice-biomarker pipelines in more naturalistic 

conditions, such as in-home recording environments, we explored a deep learning ap-

proach that could learn discriminative acoustic representations directly from raw audio. 

Deep learning models have the capacity to capture complex and subtle prosodic and spec-

tral cues that may not be well-represented by predefined features, making them particu-

larly suitable for settings with high variability in lexical content and background noise. 

For this purpose, we selected WavLM-Base-Plus [24], a transformer-based self-super-

vised speech representation model developed by Microsoft. WavLM is pre-trained on 

large-scale, noisy speech data using a masked speech prediction objective, where portions 

of the input waveform are hidden and reconstructed from surrounding context. This ap-

proach enables the model to acquire robust acoustic and prosodic representations that 

generalize across speakers, recording conditions, and linguistic variability. In addition, its 

pretraining incorporates sub-stream separation tasks that train the model to focus on a 

target speaker in the presence of background noise or overlapping speech. These capabil-

ities make WavLM particularly well suited for our three-class classification of ASD, 

ADHD, and TD speech samples. 

We organized the audio segments into class-specific directories and split them into 

training, validation, and test sets using stratified sampling to maintain class proportions 

across subsets. Each segment was resampled to 16 kHz to match the input requirements 

of WavLM and to standardize spectral resolution. Segments were padded to a minimum 

duration of 1 s and then cropped or zero-padded to a fixed length of 10 s to facilitate batch 

processing while retaining relevant acoustic information. To enhance robustness, we ap-

plied content-invariant augmentations such as speed perturbation, time dropout, and 

gain jitter during training. These augmentations aimed to reduce sensitivity to specific 

lexical content, recording artifacts, and environmental noise, thereby improving general-

ization to diverse real-world conditions. 

The WavLM encoder was configured to output hidden states from all transformer 

layers. We applied masked mean pooling to the hidden states of a mid-layer, averaging 

only over non-padded time steps to ensure that silence and zero-padding did not distort 
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the representation. Using a mid-layer allowed us to emphasize acoustic and prosodic in-

formation while reducing reliance on high-level lexical features. The resulting pooled vec-

tor was then passed through a dropout layer and a linear classification head to produce 

the final class logits. Figure 1 summarizes the framework of the deep learning model. 

 

Figure 1. Deep learning framework for voice-based ASD detection using WavLM-Base-Plus. 

To address class imbalance, we employed weighted cross-entropy loss with label 

smoothing set to 0.05. Class weights were calculated from the distribution of the training 

set to give higher importance to underrepresented classes and prevent bias toward ma-

jority classes. Training was conducted for 25 epochs with a learning rate of 1 × 10−5 and a 

batch size of 8, providing stable fine-tuning while preserving the generalization ability 

learned during pretraining. 

This approach was designed to leverage WavLM’s strength in extracting rich and 

detailed patterns in voice directly from audio files, while incorporating preprocessing and 

augmentation strategies tailored to the challenges of naturalistic, in-home data. 

4. Results and Discussions 

To evaluate the effectiveness of our approach, we compared two distinct pipelines 

for classifying ASD, ADHD, and TD speech samples. The first relies on hand-crafted 

acoustic features coupled with conventional machine learning classifiers, while the second 

leverages a deep learning framework based on WavLM-Base-Plus to learn task-specific 

representations directly from audio. This section details the results. 

4.1. Conventional Classifiers on Voice Biomarkers 

For conventional classifiers on voice biomarkers, the reported results are obtained 

using 10-fold cross-validation to ensure the reliability of the findings. Table 1 presents the 

precision, recall, accuracy, and macro F1-score for different classification methods, with 

optimized hyperparameters determined through grid search. Among all methods SVM 

classifier with RBF kernel gives the highest performance. While the results are modest for 

a three-class classification task, where random guessing would yield a performance of 

0.33, they are significantly above chance, suggesting that the outcomes are not due to ran-

domness. 

Table 1. Performance on conventional classifiers applied to voice biomarkers without feature selec-

tion. 

Classifier Accuracy Precision Recall Macro F1 

SVM (RBF, tuned) 0.4592 0.4579 0.4574 0.4575 

KNN (tuned) 0.4144 0.4115 0.4116 0.4115 

Gradient Boosting (tuned) 0.4510 0.4454 0.4441 0.4412 

AdaBoost (tuned) 0.4228 0.4172 0.4140 0.4069 

Deep MLP 0.3998 0.3964 0.3883 0.3705 
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In order to improve the performance of the best-trained classifier by eliminating 

voice characteristics that are uninformative or may negatively influence the results, we 

investigated several feature selection methods, as described in (B) in Section 3.3.1. Table 2 

reports the performance of the SVM classifier with RBF kernel with different feature se-

lection approaches. 

Table 2. Performance with different feature selection methods using SVM with RBF kernel. 

Feature Selection Method Accuracy Precision Recall Macro-F1 

None 0.4592 0.4579 0.4574 0.4575 

ANOVA F (kbest_f) 0.4720 0.4747 0.4690 0.4697 

Mutual Information (kbest_mi) 0.4546 0.4528 0.4527 0.4527 

L1-Logistic Regression 0.4387 0.4381 0.4375 0.4375 

Among the evaluated feature selection methods, ANOVA F achieved the best perfor-

mance, with an accuracy of 0.4720, precision of 0.4747, recall of 0.4690, and macro-F1 score 

of 0.4697. The baseline without feature selection yielded slightly lower results (accuracy 

0.4592, macro-F1 0.4575). Mutual Information performed marginally worse than the base-

line, with an accuracy of 0.4546 and macro-F1 of 0.4527. L1-Logistic Regression showed 

the lowest performance, with an accuracy of 0.4387 and macro-F1 of 0.4375. 

Investigating the results of the feature selection process shows that most methods 

consistently converged on the same set of 15 features across all folds, indicating strong 

stability. The most recurrently selected features comprised mean pitch (mean_f0), the first 

four formant means (mean_F1–F4), mean frequency deviation (mean_fd), mean har-

monic-to-noise ratio (mean_hnr), jitter, shimmer, and higher-order statistics such as skew-

ness and kurtosis for these measures. With only minor variations in kurtosis-based fea-

tures, this core set was retained in every outer fold for all three methods k-best (F-score), 

k-best (mutual information), and L1-regularized logistic regression, indicating their con-

sistent relevance to the classification task. 

4.2. Deep Learning Model 

The deep learning model achieved an overall accuracy of 0.769, with notably strong 

performance for the SK-ASD class, where precision was 0.78, recall was 0.93, and F1-score 

was 0.85. The high recall for SK-ASD indicates that the model is particularly effective at 

correctly identifying ASD cases. Detailed class-wise results are provided in Table 3. 

Table 3. Performance of the deep learning approach for each class. 

Class Precision Recall F1 score 

ADHD 0.72 0.66 0.69 

TD 0.81 0.48 0.6 

ASD 0.78 0.93 0.85 

The stronger performance of the deep learning model can be mainly attributed to the 

general robustness of deep learning approaches to noise as well as variability in the acous-

tic signal and make it a reliable candidate for data acquired by less professional sensors 

such as simple phone recordings. 

To better understand the acoustic cues driving classification, we conducted an occlu-

sion sensitivity analysis [25], where specific spectral bands were removed and the change 

in classification probability (Δ prob) relative to the unaltered signal was measured for each 

class. Results revealed clear class-specific dependencies on different frequency regions. 

For ASD detection, the model relied heavily on the 2000–4000 Hz range (Δ ≈ 0.63) and, to 
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a lesser extent, on low-frequency energy between 100–300 Hz, suggesting that both fine 

spectral details in the mid-high frequency range (e.g., formant structure, fricative content) 

and fundamental/low harmonic information are important discriminative features. TD 

detection was most sensitive to the 100–300 Hz range (Δ ≈ 0.46) and the high-frequency 

band 4000–8000 Hz (Δ ≈ 0.52), indicating that both voice pitch cues and high-frequency 

consonant information contribute to its identification. In contrast, ADHD detection de-

pended strongly on the 1000–2000 Hz range (Δ ≈ 0.36) and mid-low frequencies between 

300–600 Hz (Δ ≈ 0.39), while removal of the lowest band (100–300 Hz) slightly improved 

its performance (negative Δ), suggesting that energy in this band may carry non-discrim-

inative or confounding information for ADHD classification. These findings indicate that 

different neurodevelopmental conditions exhibit distinct spectral importance patterns, 

underscoring the potential of frequency-targeted features for improving diagnostic mod-

els. Figure 2a illustrates the result of the frequency-band occlusion analysis. 

Similarly, Figure 2b presents the results of a time-occlusion analysis, in which short 

200 ms segments of the audio signal were systematically muted to assess their contribu-

tion to the classification probability for each diagnostic group. The y-axis (Δ prob) indi-

cates the change in predicted probability for the target class when a given segment is re-

moved, compared to the baseline (full audio). Positive peaks correspond to time intervals 

that increase confidence in the correct classification, while negative values indicate seg-

ments whose removal improves performance (i.e., potentially misleading information). 

The SK-TD (orange) curve shows pronounced peaks within the first 2 s, suggesting 

that early portions of speech may contain distinctive acoustic cues for neurotypical chil-

dren. In contrast, the SK-ADHD (blue) curve exhibits a more fluctuating pattern, with both 

positive and negative contributions, pointing to more variable or inconsistent temporal 

markers. The SK-ASD (green) curve remains relatively flat, implying that classification for 

ASD in this setting is less dependent on specific short time intervals and may rely more 

on overall spectral or global temporal patterns. 

Such analyses could be valuable for explainability in clinical contexts. By identifying 

the temporal segments that most influence the model’s decisions, clinicians can focus on 

specific moments in recordings for further examination. 

 

(a) 
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Figure 2. (a) Frequency-band occlusion analysis showing Δ prob when specific frequency ranges are 

removed, revealing class-specific spectral dependencies, with ASD relying on 2000–4000 Hz, TD on 

100–300 Hz and 4000–8000 Hz, and ADHD on mid-frequency bands (b). (a) Time-occlusion analysis 

showing the change in classification probability (Δ prob) over time for SK-ADHD, SK-TD, and SK-

ASD. Positive values indicate reliance on the segment that are occluded. 

5. Conclusions 

This study evaluated the effectiveness of voice biomarkers and deep learning ap-

proaches for the classification of ASD, ADHD, and TD speech samples. Our experiments 

demonstrated that conventional classifiers, particularly SVMs, performed competitively 

when trained on carefully selected acoustic features, while the deep learning model 

achieved strong overall accuracy and class-specific performance. Frequency-band occlu-

sion revealed unique spectral dependencies, with ASD samples showing greater reliance 

on the 2000–4000 Hz range, TD samples relying more on both low frequencies (100–300 

Hz) and high frequencies (4000–8000 Hz), and ADHD samples depending primarily on 

mid-frequency bands. These findings indicate that spectral characteristics contain diag-

nostic cues that can be explored using more robust deep learning-based approaches. Fu-

ture work will focus on validating these results with larger and more diverse datasets, 

and on exploring multimodal integration to develop robust, clinically applicable screen-

ing tools that could assist parents in the early diagnosis of their children. 
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