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Abstract: Network anomaly detection and classification is an important open issue of
network security. Several approaches and systems based on different mathematical tools
have been studied and developed. Among them, the Anomaly-Network Intrusion Detection
System (A-NIDS), this monitors network traffic and compares it against an established
baseline of “normal” traffic profile. Then, it is necessary to characterize the “normal” Internet
traffic. This paper presents an approach for anomaly detection and classification based
on: the entropy of selected features (including Shannon, Renyi and Tsallis entropies), the
construction of regions from entropy data employing the Mahalanobis distance (MD), and
One Class Support Vector Machine (OC-SVM) with different kernels (RBF and particularity
Mahalanobis) for “normal” and abnormal traffic. Regular and non-regular regions built from
“normal” traffic profiles, allow the anomaly detection; whilst the classification is performed
under the assumption that regions corresponding to the attack classes have been characterized
previously. Although, this approach allows the use of as many features as required, only four
well known significant features were selected in our case. To evaluate our approach two
different data sets were used: one set of real traffic obtained from an Academic LAN, and
the other a subset of the 1998 MIT-DARPA set. The selected features sets computed in our
experiments provide detection rates up to 99.90% with “normal” traffic and up to 99.83%
with anomalous traffic and false alarm rate of 0.086%. Experimental results show that certain
values of the q parameter of the generalized entropies and the use of OC-SVM improves the
detection rate of some attack classes, due to a better fit of the region to the data. Besides, our
results show that MD allows to obtain high detection rates with an efficient computation time,
while OC-SVM achieved detection rates slightly higher but more expensive computationally.
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1. Introduction

The detection and prevention of attacks and malicious activities have led to the development of
technologies and devices, designed to provide a certain degree of security. One of first technologies
to counter attacks launched against computer networks were the Network Intrusion Detection Systems
(NIDS). NIDS are classified into two groups: Signature-NIDS (S-NIDS use a database with attack
signatures) and Anomaly-NIDS (A-NIDS use the principle of classify the traffic in normal and abnormal
to decide if an attack has occurred).

A-NIDS, also known in the literature as behavioral-based, apply various processes modeling in order
to detect security events. They try to establish what a “normal profile” or anomaly-free profile for system
or network behavior is, using the network features or variables e. g: destination and source IP Addresses
and Port, packet size, number of flows, and amount of packets, between hosts to identify deviations from
a “normal” behavior.

For anomaly detection [1] can be employed some traffic variables directly or functions of these
variables, e.g, the entropy. Entropy-based approaches for anomaly detection are appealing since they
provide more information about the structure of anomalies than traditional traffic volume analysis [2].
The entropy is used to capture the degree of dispersal or concentration of the distributions for different
traffic features, see for example [3], [4]. The attractiveness of entropy metrics stems from their capability
of condensing an entire feature distribution into a single number and at the same time retaining important
information about the overall state of the distribution. A sequence of packets from network traffic is
captured, network features are selected and the entropy of these network features are calculated. With
the estimated values of entropy the anomalies detection is performed, for this, a profile with “normal”
traffic is generated, the data that deviate from this profile will be considered anomalies. In the work
[5], by constructing a matrix H which contains entropy estimates of the training trace ψ, an ellipsoidal
region through the Mahalanobis distance was defined, where the greatest distance Mahalanobis found
was used to generate the ellipsoidal regions. However, this method requires training traces which have
been previously refined because the exclusion of outliers is not performed, and therefore, the generated
region can not properly represent the “normal” profile.

An improvement to the previous work [5] was proposed in [6] where the proposed algorithm uses
the Mahalanobis distance to the exclusion of outliers, and an ellipsoidal regions were generated by
calculating the parameters {x̄, γ, λ, LT}, where x̄ is the mean vector of the matrix H , γ, λ are the
eigenvectors and eigenvalues of the covariance matrix ofH , and LT is the limit of Mahalanobis distance
forH [7]. In both works, network traffic behavior was characterized by regular ellipsoidal regions.
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This paper proposes to define non-regular regions from training traces, i.e. “normal” traffic, through
OC-SVM which contains parameters that adjust the region to the training traces. In other works, for
example [9] and [10], was used the RBF kernel. But, this work proposes to use the Mahalanobis kernel,
which in general showed higher detection rates than others. Figure 1 shows different defined regions for
the case of two variables.

Figure 1. Different regions based on different methods and metrics.

The paper is organized as follows: section 2 introduces the theoretical background including different
entropy estimators, distance metrics, and OC-SVM. Section 3 formulates the problems and the proposed
methods associated with the definition of a region in the space Rp that characterizes the entropy behavior
of the p intrinsic variables associated with the trace ψ are presented. In Section 4 the experiments to
define regions and detect and classify anomalies, employing two different types of datasets are presented.
Finally, in section 6, the conclusions of this paper are outlined.

2. Mathematical Background

2.1. Entropy estimators

Let X be a r.v. that take values of the set {x1, x2, ..., xM}, pi := P (X = xi) the probability of
occurrence of xi, and M the cardinality of the finite set, hence the Shannon entropy is:

ĤS(P ) = −
M∑
i=1

pi logpi. (1)

Based on the Shannon entropy [11], Rényi [12] and Tsallis [13] defined generalized entropies, which
are related with the q-deformed algebra

ĤR(P, q) =
1

1− q
log(

M∑
i=1

pqi ) (2)

and

ĤT (P, q) =
1

q − 1
(1−

M∑
i=1

pqi ), (3)
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where P is a probability distribution and the parameter q is used to make less or more sensitive the
entropy to certain events within the distribution. When q → 1 the generalized entropies are reduced
to Shannon entropy. In order to compare the changes of entropy at different times, the entropy were
normalized.

2.2. Feature Space

Let X i
t , i = 1, 2, ..., p be features or random variables of some phenomenon under study. When the

phenomenon is observed during a time period T, N observations are collected. These observations can
be studied one by one or by group. In our case, the N observations are partitioned into m sequences or
windows of length L.

For each sequence or time windows a functional f(•) is applied. As our purpose is the study of
network traffic and the randomness of the features, we will employ the entropy as f(•).

Let Xj, j = 1, 2, ..., N ∈ Rp be the vectors associated at p features, and Hi, i = 1, ..,m, the
entropies associated at Xj in each sequence. So, we have XN×p a matrix representing the observations
andHm×p the matrix of the entropy of the m sequences.

XN×p =


X1

1 X2
1 · · · Xp

1

X1
2 X2

2 · · · Xp
2

...
...

...
...

X1
N X2

N · · · Xp
N

 f(•)→ Hm×p =


H̄(X1

1 ) H̄(X2
1 ) · · · H̄(Xp

1 )

H̄(X1
2 ) H̄(X2

2 ) · · · H̄(Xp
2 )

...
...

...
...

H̄(X1
m) H̄(X2

m) · · · H̄(Xp
m)

 (4)

A row of the matrix Hm×p represents a point in the p−dimensional feature space and the m points
generates a cloud of points, they characterizes the behavior of p variables of the phenomenon under
study. The estimations of entropy are normalized, H̄(Xp

i ) ∈ [0, 1], to perform a comparison between the
variables.

2.3. Mahalanobis distance

The Mahalanobis distance is defined as [14]: d2 = (x−µ)TC−1(x−µ), where x ∈ Rp is the sample
vector, µ ∈ Rp denote the theoretical mean vector, and C ∈ Rp×p denote the theoretical covariance
matrix.

An unbiased sample covariance matrix is

S =
1

N − 1

N∑
i=1

(xi − x̄)(xi − x̄)
′
, (5)

where the sample mean is

x̄ =
1

N

N∑
i=1

xi. (6)

Thus, Mahalanobis distance using (6) and (5) is given by:
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d2 = (x− x̄)TS−1(x− x̄). (7)

2.4. One Class Support Vector Machine and Mahalanobis Kernel

OC-SVM maps input data x1, ...,xN ∈ A (a certain set) into a high dimensional space F (via Kernel
k(x,y)) and finds the maximal margin hyperplane which best separates the training data from the origin.
Theoretical fundamentals of SVM and OC-SVM were established in [16], [17], [18]. To separate the
data from the origin, the following quadratic program must be solved [15]

min
w∈F,b∈R,ξ∈RN

1

2
‖w‖2 +

1

νN

N∑
i

ξi − b (8)

subject to (w · ϕ(xi)) ≥ b − ξi; ξi ≥ 0, ν ∈ (0, 1], where w is the normal vector, ϕ be a map function
A → F , b is the bias, ξi are nonzero slack variables, ν is the outliers parameter control and k(x,y) =

(ϕ(x), ϕ(y)). Besides, the decision function is given by f(x) = sgn ((w · ϕ(xi))− b) .
By applying the kernel function and Lagrangian multiplier (αi) to the original quadratic program, the

solution of Eq.(8) creates a decision function:

f(x) = sgn

(
N∑
i

αik(xi,x)− b

)
, (9)

where w =
∑

i αiϕ(xi) and
∑

i αi = 1.

In this work we used the Mahalanobis kernel (MK) that is defined as: K(x,y) = exp(−(x−y)
′
C(x−

y)), where C is a positive definite matrix. The Mahalanobis kernel is an extension of the Radial Basis
Function kernel (RBF). Namely, by setting C = ηI, where η > 0 is a parameter for decision boundary
control and I is the unit matrix, we obtain the RBF kernel: exp(−η ‖x− y‖2). The Mahalanobis kernel
approximation [20] is:

k(x,y) = exp(−η
p

(x− y)
′
S−1(x− y)), (10)

where p is the number of variables, and S is defined in (5).

3. Problem Statement

Let ψ be an Internet traffic data trace and p the number of random variables Xi representing the traffic
features. Using entropy of these traffic features we can find a region that characterize the feature behavior
of the trace in the feature space. If ψ was obtained during “normal” network behavior, i.e. it is free of
anomalies, this region RN will serve to detect anomalies, since deviations from “normal” behavior occur
at one or more variables when an anomaly is present, thus any behavior that is out of this region may
represent an anomaly. On the other hand, if ψ was captured while network attack occurred, the defined
region RA characterizes the anomaly. Our goal is to build a well-defined region with a given set of
observations. So, the problem is to find a region in the feature space Rp that characterizes the behavior
of the entropy of the p intrinsic variables associated with a class characterized by the trace ψ.
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Our approach for define the “normal” RN or abnormal region RA in the space is to use Mahalanobis
distance to define regular regions (i.e. hyperellipsoids) and OC-SVM which allows finding a non-regular
region based on the support vectors.

3.1. Algorithm for the construction of decision regions

The method comprises three stages: training, detection and classification. Training stage: different
regions in the feature space are defined using the Internet traffic data trace; The outliers exclusion is
performed with the definition of the α parameter like in [6]). Detection stage: the anomaly detection
using the “normal” regions RN and decision functions generated previously is accomplished. Finally,
the classification of known anomalies through pre-defined regions RA is performed.

3.1.1. Training stage

The data trace ψ is divided intom non-overlapping slots of L number of packets. Normalized entropy
estimates of each one p variable in every i−slot of size L is obtained through the relative frequency
p̂i = ni

L
, where ni is the number of times that the element xi appears in the i−slot using 2 and 3 , then

the matrixH ∈ Rm×p is built

Hm×p =


H̄(X1

1 ) H̄(X2
1 ) · · · H̄(Xp

1 )

H̄(X1
2 ) H̄(X2

2 ) · · · H̄(Xp
2 )

...
...

...
...

H̄(X1
m) H̄(X2

m) · · · H̄(Xp
m)

 , (11)

where H̄(Xp
i ) represents the normalized entropy estimation of the p variable of each i−slot obtained

from ψ. Different regions can be defined through the matrixH , in this paper, Mahalanobis distance and
OC-SVM are used.

Construction of regions based on the Mahalanobis distance method (MD):

1. To perform the exclusion of outliers the limit for Mahalanobis distance LT is calculated through
LT = ( (m−1)

2

m
)β[α,p/2,(m−p−1)/2] [7], [8], where β[α,p/2,(m−p−1)/2] represents a beta distribution with

level of confidence α and parameters p/2 and (m − p − 1)/2, m is the number of rows and p the
number of columns of matrixH .

2. The mean vector x̄ = {x̄1, x̄2, ..., x̄p}; where the i−element is the mean of the i−column of matrix
H , see eq.(6).

3. In [6] was pointed out that regular regions based on the Mahalanobis distance achieve a better fit
than those based on euclidean-distance, so the covariance matrix S of matrix H is calculated by
(5). As the matrix S is positive definite and Hermitian, all of its eigenvalues λ1 ≥ λ2 ≥ ... ≥ λp

are real and positive, and its eigenvectors γ1, γ2, ..., γp form a set of orthogonal basis vectors that
span the p−dimensional vector space.

4. The matrix equation Sγ = λγ is solved according to an specific or known algorithm to obtain the
eigenvalues λi and eigenvectors γi of S.
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5. Finally, we can define an hyperellipsoidal regionRN based on MD, which characterizes the matrix
H by means of {LT, x̄,γ,λ}.

Construction of regions based on the OC-SVM method:

1. The equation (8) is solved using two different kernel functions (Radial Basis Function (RBF)
and Mahalanobis kernel(MK)) by the sequential Minimal Optimization Algorithm (SMO) [19],
considering as input data the matrix obtained in the previous step.

2. The vector obtained in the previous step is: {xi = svi, αi, b}, where xi = svi is the i-support
vector, αi, b are constants that solve the equation (8).

3.1.2. Detection stage

1. In the current traffic an i−slot of size L packets is captured, the p features or variables associated
to every packet are extracted and their entropies estimated, with these values the input vector hi

for decision functions is built:

hi =
(
H̄(X1

i ), H̄(X2
i ), · · · , H̄(Xp

i )
)
. (12)

2. The decision function for MD region is given by (7), if d2i ≤ LT then i−slot is considered
“normal” otherwise is a potential anomaly.

3. The decision function for OC-SVM is (9), if the function is +1 then hi is considered “normal”
otherwise is a potential anomaly.

3.1.3. Classification stage

RegionsRA for anomaly traffic are built employing the same algorithm described in the training stage.
If the vector (12) is out of the “normal” region, i.e hi /∈ RN , but hi ∈ RA the abnormal behavior, then
it will be classified. Here hi is evaluated with all decision functions defined in the training stage. The
classification is refined using the k-nearest neighbors algorithm to insure that a point belongs to a specific
class.

4. Experiments and results

4.1. Data sets

We evaluate our approach by analyzing its performance over two different experimental databases.
The first one is from an Academic LAN [21], and it is composed of traffic information collected during
seven days. A trace contain “normal” traffic (β1) and four traces are formed with traffic considered
“normal” plus traffic generated by four real attacks: port scan (ψ1), and the worms: Blaster (ψ2), Sasser
(ψ3) and Welchia (ψ4). The second one is a sub-set of the 1998 MIT-DARPA [22] (public set benchmark
for testing NIDS), and it is composed of one training trace (β2) that was collected during five days of
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“normal” behavior of the network and four traces contains the traffic generated by Smurf (ψ5), Neptune
(ψ6), Pod (ψ7) and portsweep (ψ8) attacks.

4.2. Detection of anomalies in network traffic

As it was pointed out, anomaly-free traces were divided into m non-overlapping slots of size L
(in our case L = 32) packets. This size was chosen because the duration of some attacks in the test
traces were around to 30 packets, assuring at least one slot with malicious traffic. The attacks that are
used in this work (scans and denial of service) generate deviations from the typical behavior of the
IP and Ports addresses, respectively. So, they were defined for this experiment p = 4 random variables
Xr, r = 1, ..., 4; that represent four traffic features: X1 source IP addresses,X2 destination IP addresses,
X3 source port addresses and X4 destination port addresses. In each i-slot the normalized entropy
estimates from each p variable were obtained and the vectors hXp =

(
H̄(Xp

1 ), H̄(Xp
2 ), ..., H̄(Xp

m)
)

were constructed. The values of q parameter of the generalized entropies used in the experiments are
{0.01, 0.1, 0.5, 1.5, 2, 10, 20}.

Next, five matrices were formed: HIp ∈ Rm×2 containing the entropy estimates of source and
destination IP addresses,HPt ∈ Rm×2 containing estimates of entropy of the source and destination port
addresses, HIpDPt ∈ Rm×3 containing estimates of entropy of the source and destination IP addresses
and entropy estimates of destination port address,HIpSPt ∈ Rm×3 containing estimates of entropy of the
source and destination IP addresses and entropy estimates of source port address, finallyHIpP t ∈ Rm×4

where each column contains estimates of entropy of each variable considered in this paper. For example

HIpP t = (hX1
′ hX2

′ hX3
′ hX4

′) (13)

The ellipsoidal regions in the feature space were obtained with these matrices, non-regular regions
were found through Oc-SVM with Radial Basis Function (RBF) and Mahalanobis Kernel (MK).
Parameters η and ν of OC-SVM were selected in the 5-fold cross-validation process. For implementation
of OC-SVM the LIBSVM library [23] was used. The found regions are used to detect anomalies in
network traffic. Therefore, traces containing traffic generated by different anomalies were used. Each
test trace was divided into slots of size L = 32 packets and the estimates of entropy for each variable
considered in this work were obtained. To each i-slot the Mahalanobis distance was computed by (7).
Likewise, each i-slot was analyzed with OC-SVM decision function (9) for both kernels used in this
paper, and thus it was determined whether it belongs to the non-regular region or not.

Results for anomaly detection of the LAN and MIT-DARPA traces using Tsallis entropy with q = 0.01

and the features considered in this work through the ellipsoidal and non-regular regions are displayed in
Table 1. The detection rate for the attack ψ6 is 0 or 100, because it is contained in only one slot.

4.3. Classification of worms attack

Each anomaly-traffic traces were divided into m non-overlapping slots of size L = 32 packets. The
four traffic feature were extracted from each packet and for each i-slot, i = 1, ...,m, of the traces the
estimation of entropy H̄(Xr

i ) is obtained. Next, five matrices were formed. Each anomaly-traffic trace
generates a region on the feature space, the ellipsoidal region was defined with Mahalanobis distance, and
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Table 1. Detection rate using Tsallis entropy with q = 0.01.

Region LAN MIT-DARPA
HIp

β1 ψ1 ψ2 ψ3 ψ4 β2 ψ5 ψ6 ψ7 ψ8

MK 96.56 100 99.38 87.48 95.68 99.80 99.91 0.0 92.85 22.22
RBF 91.53 100 99.37 84.66 86.75 99.04 99.91 0.0 92.85 22.22
MD 99.27 100 99.53 81.89 97.23 99.99 99.91 0.0 0.0 0.0

HPt

MK 97.02 92.59 86.38 61.67 86.99 99.79 99.39 100 92.85 88.88
RBF 93.04 88.88 85.2 63.0 86.74 99.89 99.82 100 92.85 88.88
MD 99.3 77.77 86.89 63.37 1.35 99.89 0.0 100 0.0 100

HIpSPt

MK 97.81 100 99.72 84.98 99.63 99.92 99.91 100 92.85 66.66
RBF 96.72 100 99.69 81.28 99.47 99.9 99.91 100 92.85 66.66
MD 99.04 100 99.62 81.52 98.74 99.89 99.91 100 0.0 44.44

HIpDPt

MK 97.18 100 99.43 85.09 99.56 99.91 99.91 0.0 92.85 88.88
RBF 93.96 100 99.40 90.35 99.38 99.77 99.91 0.0 92.85 100
MD 99.05 100 99.6 82.67 98.4 99.88 99.91 0.0 0.0 100

HIpP t

MK 97.75 100 99.64 78.84 99.56 99.90 99.91 100 92.85 100
RBF 97.45 100 99.61 87.99 99.71 99.89 99.91 100 92.85 100
MD 98.87 100 99.67 81.91 98.78 99.84 99.91 100 0.0 100

non-regular regions were found through OC-SVM with Radial Basis Function (RBF) and Mahalanobis
Kernel (MK). Figure 2 shows the ellipses and non-regular regions defined on the feature space of IP
addresses for each anomaly-traffic traces from LAN and MIT-DARPA traces.

Figure 2. Worm attack regions in the 2D space.

(a) Worm attack regions from LAN traces in the 2D space
(L = 32).

(b) Worm attack regions from MIT-DARPA traces in the 2D
space (L = 32).
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In figure 3 the results of the classification of anomalies on LAN network traces using Tsallis entropy
estimates with q = 0.01 of the Ips and ports variables and the different regions found with the proposed
method are shown. These results were obtained using the knn approach as in [6].

Figure 3. Impact of the order of Knn on the detection rate.

5. Discussion of the experiment results

The effects of the number of features on the detection rate is showed in table (1). In OC-SVM method
the Mahalanobis Kernel is better than RBF, since improves the detection rate in certain traces. Using the
Knn method the classification is improved, however, it has a delay of k-slots to perform the classification.

Considering packet sizes of 60 bytes, in a 100Mbs network, to capture a slot of 32 packets, the time
required is 32×60×8

100Mbs
= 153.6µS. The time of the training stage is not critical since this is done only once

and offline. Using a PC with Intel Core i7 3.4 Ghz and 16G of RAM, a C-implementation of the here
a proposed method using MD and including the decision function took computation times of not more
than 5µs. Therefore, the proposed method can be implemented in real time.

6. Conclusions

In this paper was proposed a method to detect and classify Internet traffic anomalies using: entropy
of selected four features, Mahalanobis distance, and OC-SVM with two kernels RBF and particularly
Mahalanobis Kernel. Regular and non-regular regions were built from normal traffic from training
datas. Ellipsoidal regions based on Mahalanobis distance and the computation of {x̄, γ, λ, LT} allow
detection rate in the order of 98.81%. OC-SVM using Mahalanobis kernel achieve detection rate of
99.83% slightly higher than those using RBF kernel. Computation times in order of a few µs were
obtained with ellipsoidal regions for detection of an anomaly. Consequently these results are very
significant for real time implementation.
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HIp

β1 ψ1 ψ2 ψ3 ψ4 β2 ψ5 ψ6 ψ7 ψ8

MK 96.94 100 99.16 85.39 97.14 99.97 99.91 0.0 92.85 33.33
RBF 96.45 100 99.11 88.47 97.10 99.96 99.91 0.0 92.85 33.33
MD 98.77 100 99.08 65.86 95.79 99.93 99.91 0.0 92.85 33.33

HPt

MK 97.36 77.77 82.34 66.74 89.23 99.71 99.82 100 92.85 100
RBF 97.33 74.07 81.90 66.77 89.28 99.92 99.82 100 92.85 100
MD 98.51 11.11 70.58 60.41 83.04 99.73 99.82 100 92.85 88.88

HIpSPt

MK 97.45 100 99.43 80.71 99.42 99.89 99.91 100 92.85 55.55
RBF 97.35 100 99.48 80.74 99.48 99.74 99.91 100 92.85 55.55
MD 99.56 100 99.16 66.25 97.20 99.84 99.91 0.0 92.85 55.55

HIpDPt

MK 97.01 100 99.26 85.02 99.28 99.91 99.91 0.0 92.85 88.88
RBF 97.50 100 99.25 87.88 99.47 99.91 99.91 0.0 92.85 88.88
MD 98.44 100 99.17 67.64 98.39 99.83 99.91 0.0 92.85 88.88

HIpP t

MK 97.02 100 99.39 82.21 99.54 99.96 99.91 100 92.85 100
RBF 97.36 100 99.43 82.66 99.63 99.77 99.91 100 92.85 100
MD 98.65 100 99.19 67.80 98.54 99.82 99.91 100 92.85 100
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Table 3. Detection rate for Renyi entropy with q = 0.01.

Region LAN MIT-DARPA
HIp

β1 ψ1 ψ2 ψ3 ψ4 β2 ψ5 ψ6 ψ7 ψ8

MK 96.74 100 99.22 86.96 95.93 99.98 99.91 0.0 92.85 22.22
RBF 96.77 100 99.17 85.08 94.02 99.95 99.91 0.0 92.85 22.22
MD 98.77 100 99.23 60.89 79.02 99.93 99.91 0.0 92.85 22.22

HPt

MK 92.84 88.88 83.77 62.45 88.31 99.76 99.39 100 92.85 88.88
RBF 93.09 88.88 81.88 60.8 91.11 99.86 99.82 100 92.85 77.77
MD 98.38 14.81 70.14 60.03 86.74 99.58 99.39 100 92.85 88.88

HIpSPt

MK 97.93 100 99.58 70.59 98.84 99.92 99.91 100 92.85 55.55
RBF 96.72 100 99.69 81.28 99.47 99.87 99.91 100 92.85 66.66
MD 97.36 100 99.57 56.79 99.12 99.78 99.91 100 92.85 77.77

HIpDPt

MK 97.18 100 99.43 85.09 99.56 99.92 99.91 0.0 92.85 88.88
RBF 96.9 100 99.35 84.76 99.59 99.76 99.91 0.0 92.85 88.88
MD 98.65 100 99.32 62.78 98.85 99.77 99.91 0.0 92.85 100

HIpP t

MK 97.75 100 99.64 78.84 99.56 99.28 99.91 100 92.85 100
RBF 97.14 100 99.58 79.05 99.59 99.77 99.91 100 92.85 100
MD 98.65 100 99.38 63.83 98.88 99.42 99.91 100 92.85 100

In figures (4(a)), (4(b)), (5(a)) and (5(b)) the results of the classification, and the impact of the order
of Knn on the detection rate of LAN traces and ψ5 y ψ8 and β2 from MIT-DARPA traces using entropy
estimates of the Ips and ports variables and the different regions found with the proposed method are
shown. These results were obtained with q = 0.01 for generalized entropies. The others attacks from
MIT-DARPA traces are excluded because the estimates of entropy are zero or there is only one point.

Figure 4. Impact of the order of Knn on the classification of LAN traces using Shannon and
Renyi entropies respectively.

(a) Classification using Shannon entropy. (b) Classification using Renyi entropy with q = 0.01.
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Figure 5. Impact of the order of Knn on the classification of β2, ψ5 y ψ8, using Shannon and
Renyi entropies respectively.

(a) Classification using Shannon entropy. (b) Classification using Renyi entropy with q = 0.01.

In figure 6 the results of the classification of anomalies on MIT-DARPA network traces using Tsallis
entropy estimates with q = 0.01 of the Ips and ports variables and the different regions found with the
proposed method are shown.

Figure 6. Impact of the order of Knn on the detection rate with Tsallis entropy and q = 0.01.
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