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Abstract 

This research presents a novel, real-time Pakistani Sign Language (PSL) recognition sys-

tem utilizing a custom-designed sensory glove integrated with advanced machine learn-

ing techniques. The system aims to bridge communication gaps for individuals with hear-

ing and speech impairments by translating hand gestures into readable text. At the core 

of this work is a smart glove engineered with five resistive flex sensors for precise finger 

flexion detection and a 9-DOF Inertial Measurement Unit (IMU) for capturing hand ori-

entation and movement. The glove is powered by a compact microcontroller, which pro-

cesses the analog and digital sensor inputs and transmits the data wirelessly to a host 

computer. A rechargeable 3.7 V Li-Po battery ensures portability, while a dynamic dataset 

comprising both static alphabet gestures and dynamic PSL phrases was recorded using 

this setup. The collected data was used to train two models: a Support Vector Machine 

with feature extraction (SVM-FE) and a Long Short-Term Memory (LSTM) deep learning 

network. The LSTM model outperformed traditional methods, achieving an accuracy of 

98.6% in real-time gesture recognition. The proposed system demonstrates robust perfor-

mance and offers practical applications in smart home interfaces, virtual and augmented 

reality, gaming, and assistive technologies. By combining ergonomic hardware with in-

telligent algorithms, this research takes a significant step toward inclusive communication 

and more natural human-machine interaction. 

Keywords: sensory glove; hand gesture recognition; machine learning; deep learning; 

long short-term memory (LSTM) 

 

1. Introduction 

Many deaf and speech-impaired Pakistanis struggle to communicate and socialize. 

Technologies that make communication easier and more inclusive are needed to reduce 

social isolation and access to services and opportunities [1]. 

More than 120 sign languages exist, including American, Indian, Italian, and Paki-

stan Sign Language (PSL) [2]. Most Sign Language Recognition (SLR) systems interpret 

hand motions based on their attributes. In PSL, the SLR system may produce text on a 

screen or speech on a speaker device, improving communication for Pakistan’s deaf and 

hard-of-hearing [3–6]. 

Academic Editor(s): Name 

Published: date 

Citation: Kanwal, T.; Altaf, S.; 

Yousaf, R.M.; Sattar, K. A Smart 

Glove-Based System for Dynamic 

Sign Language Translation Using 

LSTM Networks. Eng. Proc. 2025, x, 

x. https://doi.org/10.3390/xxxxx 

Copyright: © 2025 by the authors. 

Submitted for possible open access 

publication under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 

https://sciforum.net/event/ECSA-12


Eng. Proc. 2025, x, x FOR PEER REVIEW 2 of 20 
 

 

Recently, deep learning architectures have achieved state-of-the-art performance on 

several computer vision problems [7,8]. SLR system design using a Convolutional Neural 

Network (CNN) may be adjusted for Pakistan Sign Language to increase identification 

accuracy and usability [3]. 

Most Sign Language Recognition (SLR) systems use sensor-based, image-based, or 

hybrid techniques [2–6]. The first method fails to capture the hand’s location relative to 

the other hand and body, which is crucial to comprehending PSL movements. The second 

option requires the camera to be in front of the user, which might hinder mobility. This 

limitation might make it difficult for users to manage the camera while doing signs in real 

life. Due to illumination and field of vision issues that might impact accuracy and con-

sistency, this technique is unsuitable. Users may find the hybrid technique impractical for 

real-life talks since it requires a glove and camera. This configuration is both expensive 

and computationally intensive, limiting its acceptance and development. 

Our unique Pakistan Sign Language (PSL) identification system uses a sensory glove 

and machine learning. This strategy makes communication more natural and effective 

than previous methods. The proposed SLR system recognizes static and dynamic PSL ges-

tures, incorporating a wider range of signs and supporting the development of a real-time 

application that predicts signs, improves sentence grammar, and converts them into spo-

ken Urdu sentences. 

The device uses a sensory glove with an Inertial Measurement Unit (IMU) sensor 

(MPU9250) to track hand motions and orientation and flex sensors to quantify finger 

bending. The wireless glove transmits data to a processing unit without physical connec-

tions to allow user movement. PSL gestures are predicted using SVM-FE and LSTM ma-

chine learning models on the obtained data. Gemini is used to fix grammatical problems 

and mispredictions in the produced phrases, and Google Text-to-Speech (gTTS) in Urdu 

reads the result. 

The paper’s structure follows. SLR systems are reviewed in Section 2. Section 3 de-

scribes the Pakistan Sign Language motions used to build the dataset. This study’s hard-

ware and machine learning architectures are described in Section 4. Section 5 analyzes the 

dataset and reviews the machine learning models. Section 6 explains the real-time trans-

lation of PSL motions into spoken words. In Section 7, we evaluate our architecture, mod-

els, and real-time implementation and suggest improvements. Section 8 ends with obser-

vations. 

2. Related Work 

As illustrated in Figure 1, a Sign Language Recognition (SLR) system may be imple-

mented utilizing a sensor-based, image-based, or hybrid technique [2–6]. 

A glove with many sensors and connections is worn in the sensor-based system ap-

proach. The system tracks and records hand and finger motions with these sensors. The 

computer receives finger bending, motions, orientation, rotation, and hand position data 

for interpretation. This method is mobile and accurate in gesture recognition. It lacks facial 

expressions and emotional clues, which Pakistan Sign Language (PSL) uses to convey 

complex meanings and improve communication. 

A glove full of sensors and cables is not needed in the image-based method. This 

technology captures photos with a camera and recognizes PSL motions using computer 

vision and image processing. This method, which uses only a camera and CPU to con-

struct a recognition system, is popular because to its simplicity and implementation. But 

continual camera alignment can disrupt the natural flow of discussion and hurt the user 

experience, especially in dynamic, real-world environments. 
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Figure 1. Main approaches for SLR system. 

The third way, the hybrid strategy, combines glove- and camera-based benefits. Mu-

tual error correction improves recognition accuracy and system dependability. However, 

like the image-based system, this solution has mobility issues and may not be suitable for 

Pakistani daily conversation. 

A new Pakistan Sign Language (PSL) recognition method is presented here. This sug-

gested system addresses the gestures, structure, and communication demands of Paki-

stan’s deaf and hard-of-hearing people, making it more practical, real-time, and efficient 

than current methods). 

3. Urdu Signs Overview 

This section introduces the Pakistan Sign Language (PSL) movements used to build 

the dataset, which comprise static gestures for letters and dynamic gestures for words. For 

real-time recognition and phrase creation, many new control gestures were included. 

These are ‘n’ to signal a resting hand, ‘space’ (‘ ‘) to combine letters into words, and ‘p’ to 

concatenate words into a phrase and speak it. The package comprises the PSL alphabet, 

three control signs (‘space’, ‘n’, and ‘p’), and 16 dynamic signs for typical PSL words. This 

yields 47 distinct indications sample shown in Figure 2. 

 

Figure 2. Sample Urdu signs used in the dynamic dataset. 

4. Methodology 

4.1. Block Diagram 

The sensory glove system efficiently translates Pakistan Sign Language (PSL) into 

spoken Urdu using sensors and microcontrollers. Pakistani deaf and hard-of-hearing peo-

ple can better communicate by interpreting PSL signals, creating grammatically accurate 

words, and speaking them. 

Figure 3 shows the transmitter and receiver, which make up this work’s system. The 

transmitter system uses a lightweight, wearing glove with sensors to record PSL hand 
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gestures and motions. The receiver receives this data wirelessly and utilizes machine 

learning techniques to properly forecast the user’s sign. The algorithm then generates log-

ical phrases from these signals and speaks them in real time in Urdu. 

 

Figure 3. Transmitter–receiver block diagram. 

4.2. Sensory Glove or Transmitter System 

Figure 4 shows the sensory glove system’s main components for Pakistan Sign Lan-

guage (PSL) identification. An Arduino microcontroller [9] interacts with five flex sensors 

to detect finger flexing and deliver finger locations, which is needed for recognizing static 

PSL movements. 

 

Figure 4. Picture of the actual sensory glove. 

The glove uses an MPU9250 IMU to track hand orientation and movement. This sen-

sor’s accelerometer, gyroscope, and magnetometer data are essential for dynamic PSL sign 

recognition. This study tracks hand mobility with accelerometer data. Euler angles can 

affect hand orientation, but axis alignment can cause gimbal lock. Instead of gimbal lock, 

quaternions express 3D rotations with four components (one scalar and three imaginary), 

ensuring stability and accuracy. 
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Startup calibration ensures the IMU sensor works correctly and provides accurate 

results. After turning on the glove, the user must calibrate the magnetometer with a fig-

ure-8 motion. User lays hand flat and motionless on surface to calibrate accelerometer and 

gyroscope. This method keeps PSL gesture recognition orientation and motion data con-

stant. The Arduino IDE’s FastIMU package automates this calibration, making it simple 

and dependable. 

Manufacturing and finger features can affect flex sensors, which detect finger bend-

ing. Flex sensor calibration standardises readings. First, the user must completely flex 

their fingers for 5 s. Arduino takes many measurements and calculates the median to de-

termine flexed. Next, the user completely expands their fingers and holds for 5 s while 

taking further readings. The minimum and maximum reference points for each finger are 

then determined using the median values for flexed and stretched states. 

Scalibrated sensor value is calculated using the following formula after recording 

these reference values: 

Calibrated Svalue = (
Raw Value − Rawmin

Rawmax − Rawmin
) (1) 

Raw Value is the raw sensor measurement, Rawmax and Rawmin are the median values 

for fully stretched and flexed positions, respectively. This algorithm normalizes flex sen-

sor data from 0 to 1023 to a defined range of −1 to 1, guaranteeing uniform readings across 

all sensors, independent of finger or sensor differences. 

The five calibrated flex sensors now give precise and consistent finger position data, 

which is important for Pakistan Sign Language gesture detection. The whole data format 

contains these parameters: 

The data includes quaternion components (q0, q1, q2, q3) for 3D hand orientation, 

accelerometer readings (ax, ay, az) for hand movement along X, Y, and Z axes, and stand-

ardized measurements (s1, s2, s3, s4, s5) for each finger’s flex sensors. 

The receiver module receives these sensor data wirelessly from an NRF24L01 trans-

ceiver (Figure 5). Due to the NRF24L01’s 32-byte payload constraint, the data is formatted 

into a string and delivered in three packets: quaternion, accelerometer, and flex sensor. 

The transmitter delivers this structured data string at set intervals via the RF connection 

to the receiver, providing real-time hand gesture data. 

 

Figure 5. NRF24L01 transceiver. 

A tiny 3.7 V battery powers the glove-based device, making it portable and easy to 

use for real-world PSL applications including daily communication, teaching, and public 

engagement. 

4.3. Receiver System 

The receiver mechanism in Figure 3 continually listens for transmitter data packets. 

Initialized to listen for signals, the NRF24L01 wireless module stays active until it gets all 
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data. The receiver algorithm waits until all three data batches—quaternion (orientation), 

accelerometer (movement), and flex sensor (finger position)—are received before merging 

them into a data packet. 

Pakistan Sign Language (PSL) gesture recognition requires synchronized and reliable 

incoming data, which this structured reception provides. The processing unit analyzes the 

complete data set to forecast PSL indications using machine learning methods. After rec-

ognizing signs, a text-to-speech technology converts a statement into spoken Urdu, allow-

ing deaf and hearing people to communicate. 

4.4. Proposed SVM with Feature Extraction (SVM-FE) Model 

SVM [10] and FE are successful classification methods for Pakistan Sign Language 

(PSL) gesture recognition. This combination streamlines complicated sensor data into im-

portant characteristics, increasing the SVM’s PSL sign recognition. Features extraction de-

creases input data dimensionality and highlights the most essential gesture properties, 

helping the SVM create clearer decision boundaries and improve classification accuracy. 

For sequential PSL data, summarizing features helps the model grasp motion pat-

terns and temporal trends in static and dynamic signals. 

Table 1. presents the architecture of the SVM-FE model. 

Component Description 

Input Features Raw sensor data from 12 channels: q0–q3, ax–az, s1–s5 

Feature Extraction For each channel: Mean, Std, Min, Max, FFT Magnitude, FFT Std → 72 features total 

Normalization StandardScaler applied to all features (zero mean, unit variance) 

Classifier Support Vector Machine (SVM) with linear kernel 

Output Gesture class probabilities (47 PSL classes) 

To categorize PSL signals, the SVM-FE model uses a linear kernel to produce a 

straight-line (or hyperplane) decision boundary in feature space. The model outputs prob-

ability estimates for each class instead of only the most likely label. This probabilistic out-

put aids ambiguous gesture decision-making. 

StandardScaler scales input characteristics to 0 and 1 for mean and standard devia-

tion. Normalization balances features (e.g., accelerometer vs. flex sensor readings) and 

speeds model convergence during training, boosting identification performance. 

4.5. Proposed LSTM Model 

LSTM networks [11,12] handle sequential data, which is essential for identifying Pa-

kistan Sign Language (PSL), especially dynamic motions. They excel in time-series appli-

cations like gesture sequences, speech recognition, and natural language processing be-

cause their design learns and retains long-term relationships. 

The LSTM model architecture for PSL gesture prediction in our study is shown in 

Figure 6. 
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Figure 6. LSTM model architecture. 

The sequential neural network model uses bidirectional LSTMs. Initial input layer 

has 75-time steps and 12 characteristics per time step. Quaternion components (q0, q1, q2, 

q3), accelerometer measurements (ax, ay, az), and flex sensor data (s1, s2, s3, s4, s5) capture 

PSL hand gesture motion and orientation. 

A 128-unit bidirectional LSTM layer returns sequences after the input. This design 

lets the model learn gesture patterns in both forward and backward temporal directions, 

improving context awareness. After that, a 10% dropout layer randomly disables a per-

centage of neurons during training to minimize overfitting and promote generalization. 

Next, a second 128-unit bidirectional LSTM layer is added, designed to not return 

sequences and output a single final state summing the input sequence’s learnt infor-

mation. Another 10% dropout layer reduces overfitting risk. 

Non-linearity from a dense layer with 128 units and a tanh activation function lets 

the model record complicated gesture data correlations. The output layer is a thick soft-

max layer with the same number of units as PSL gesture classes. For multiclass classifica-

tion and interpretable PSL sign predictions, the softmax function converts the final output 

into a probability distribution. 

Training was stopped early to prevent overfitting. This method stops training if the 

model’s validation loss doesn’t improve after a certain number of epochs. This method 

stops the model from remembering noise or highly particular patterns in the training data 

and enhances its generalization to fresh PSL inputs. 

Layer sizes and dropout rates were chosen to balance complexity and generalization 

in the model architecture to achieve consistent performance on unseen data during vali-

dation. 

5. Experiments and Results 

5.1. Dataset 

Data from one participant was used to record dynamic movements for 47 Pakistan 

Sign Language (PSL) letters and words. The participant purposefully altered hand speed 

and location while completing gestures to simulate real-world variability in PSL usage by 

distinct users under varying ambient and physical situations to guarantee the system can 

generalize across users. This technique plus a comprehensive calibration method reduce 

individual-specific variability and improve recognition performance. 

The IMU sensor data provides normalized quaternion measurements (−1 to 1), indi-

cating 3D hand orientation. Accelerometer data, often ranging from −2 to +2, was kept 
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unnormalized to retain important information like abrupt hand movements or impacts 

during complicated PSL motions. These inherent changes in accelerometer data help the 

algorithm learn and distinguish swift or powerful motions that normalization would re-

duce. 

Flex sensor data is calibrated and standardized within a −1 to 1 range to account for 

finger variations and sensor discrepancies. This standardization allows the algorithm to 

focus on gesture patterns rather than signal fluctuations, enhancing gesture recognition 

across users. 

No data augmentation was done on this dataset. This was done to retain PSL ges-

tures’ naturalness. Artificial data may provide inconsistencies or abnormalities that hin-

der model learning. The dataset provides a clean, realistic basis for PSL gesture recogni-

tion model training. 

For each PSL sign, 75 time steps were captured at 50 Hz, recording a 1.5-s gesture 

frame (75 time steps ÷ 50 Hz = 1.5 s). Each time step saves 12 features quaternion orienta-

tion (q0, q1, q2, q3), accelerometer measurements (ax, ay, az), and calibrated flex sensor 

values (s1–s5)—as a single row in a CSV file labeled with the PSL sign. 

There are 130 readings per sign, 100 for training, 15 for testing, and 15 for validation. 

The dataset is balanced over all 47 PSL classes, preventing gesture bias. This structure 

yields 6110 gesture examples (130 readings × 47 signs), providing a broad dataset that 

accurately captures the dynamic and expressive nature of PSL motions. Table 2 shows a 

dataset sample with data format and labels. 

Table 2. Sample of the dynamic dataset. 

q0 q1 q2 q3 ax ay az s1 s2 s3 s4 s5 

0.98 0.05 0.02 0.18 0.10 −0.02 0.98 −0.4 −0.2 0.1 0.3 0.0 

0.97 0.06 0.01 0.20 0.12 −0.01 0.95 −0.4 −0.2 0.1 0.3 0.0 

0.98 0.04 0.01 0.19 0.11 −0.03 0.97 −0.4 −0.2 0.1 0.3 0.0 

0.97 0.05 0.02 0.21 0.13 −0.02 0.96 −0.4 −0.2 0.1 0.3 0.0 

0.98 0.06 0.01 0.18 0.10 −0.02 0.99 −0.4 −0.2 0.1 0.3 0.0 

The box plot in Figure 7 shows accelerometer and flex sensor data-based PSL gesture 

class distribution. A box plot (sometimes called a box-and-whisker plot) uses five sum-

mary statistics minimum, first quartile (Q1), median, third quartile (Q3), and maximum 

to show data distribution and symmetry. The central box contains the interquartile range 

(IQR), the middle 50% of the data, from Q1 to Q3. The smallest and greatest values within 

1.5 times the IQR are “whiskers”; data points beyond this range are outliers. 

The box plot shows each gesture’s sensor reading distribution and variability in this 

PSL dataset. It shows how motions create discrete sensor patterns, helping the model cat-

egorize them. 
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Figure 7. Box plot of multiple sensor values across different gestures. 

A crucial discovery from the plots is that broader or taller boxes in either the accel-

erometer or flex sensor data imply a higher standard deviation, frequently linked with 

greater movement or unpredictability in the gesture. The accelerometer plots of static PSL 

movements like letter representations reveal no or very narrow boxes, indicating negligi-

ble hand movement. Dynamic gestures, like as the PSL sign for “السلام علیکم” (Peace be upon 

you), have bigger boxes in accelerometer data because to their strong motion. 

Commonly, motions with little sensor reading fluctuation (like static signals) have 

more outliers. The very sensitive sensors catch slight involuntary hand movements or user 

changes that cause these outliers. 

Note that all gesture class box plots reveal no abnormal data patterns, indicating con-

stant and reliable sensor performance throughout data collection. No unexpected results 

or dramatic deviations demonstrate that sensor calibration and system integrity were 

maintained throughout the recording procedure, boosting dataset trustworthiness. 

5.2. SVM-FE Model Results 

5.2.1. Data Preprocessing for SVM-FE Model 

To summarise time-series data from the dynamic gesture dataset and provide se-

quential PSL gesture data for SVM training, feature extraction is essential. Statistical and 

frequency-based characteristics are derived from raw sensor sequences to create a com-

pact, learnable format. 

Feature extraction for the PSL dataset involves determining the mean, standard de-

viation, minimum, and maximum for each sensor signal over 75 time steps. Each signal is 

Fast Fourier Transformed (FFT) to extract the amplitude and standard deviation of fre-

quency components to reflect hand movement pattern variations over time. These features 

show PSL gesture temporal and spectral properties, which are essential for SVM classifi-

cation. 
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After collecting 75 gesture data points, the system computes median, standard devi-

ation, minimum, maximum, FFT magnitude, and FFT standard deviation for each of the 

12 sensor channels (q0–q3, ax–az, s1–s5). The gesture sequence is summarized into a com-

pact, useful 72-dimensional feature vector (6 features × 12 sensors) for SVM input. 

This feature engineering method helps the SVM model discover unique PSL gesture 

patterns and changes, enhancing classification performance and resilience across static 

and dynamic sign inputs. 

5.2.2. Results 

Table 3 shows SVM-FE model accuracy on training, test, and validation datasets. The 

confusion matrices for this model’s training and validation datasets are shown in Figure 

8. 

Table 3. SVM-FE model Performance. 

Metric/Observation Result/Description 

Training Accuracy 97.8% 

Validation Accuracy 94.2% 

Test Accuracy 93.6% 

Misclassified Static Gestures " ", "ح" → "ج؂ر" → " " 

Cause of Confusion Similar hand angles, overlapping quaternion and accelerometer values 

Sensor Overlap Example Flex 2–3 overlap for " ؂ر"/" "; Flex 1 overlap for "ح"/"ج" 

The SVM-FE model has high accuracy and a balanced confusion matrix on the vali-

dation dataset. The model’s ability to mistake static PSL motions was a major drawback. 

Often, “ر” is misinterpreted as "؂"  in the test dataset and “ح” as “ج” in the validation 

dataset. 

 

Figure 8. Confusion matrices of the SVM-FE model. 
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These movements are motionless and have identical hand angles, which provides 

comparable quaternion data and reduces accelerometer activity, causing misunderstand-

ing. Flex sensor data is the main differentiator here. Examining SVM extracted feature 

histograms, flex sensor readings (particularly flex 2 and 3 for “ ر” and “ “ in Figure 9 and 

flex 1 for “ح” and “ج” in Figure 10) show overlap. This overlap seems to cause most cate-

gorization errors for these motions. 

More training data can increase variability and help the model learn finer differences. 

An improved sensor system that captures more accurate and consistent finger locations is 

the better and longer-term option. Flex sensors include bending sensitivity, poor angular 

resolution, and inability to directly monitor finger orientation, which limits their accuracy. 

 

Figure 9. Histogram of feature-extracted data from flex sensors 2 and 3 for gestures. 

More sophisticated sensing technologies including capacitive sensors, optical bend 

sensors, and multi-axis finger joint trackers might record tiny finger motions and gesture 

information. This will greatly enhance PSL gesture recognition accuracy, especially for 

static signals distinguishable just by finger location, improving system performance and 

robustness. 
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Figure 10. Histogram of feature-extracted data from flex sensor 1 for gestures. 

5.3. LSTM Model Results 

5.3.1. Data Preprocessing for LSTM Model 

Data preparation prepares the dataset for training the LSTM model, which learns 

temporal relationships from sequential data. Section 5.1 describes each gesture instance 

in the dataset as 75 time steps with 12 attributes and a single label describing the motion. 

To train the LSTM model, raw data is molded into a 75 × 12 matrix for gesture sam-

ples. Each row represents a time step, and each column represents one of 12 sensor char-

acteristics (quaternions, accelerometer data, and flex sensor readings). This modification 

preserves gesture data temporal structure, allowing the model to capture dynamic pat-

terns. Each matrix is coupled with its gesture label to create a dataset for supervised LSTM 

training. 

5.3.2. LSTM Model Training 

Figure 11 shows the accuracy and loss variation for the training and validation da-

tasets during LSTM model training. For multi-class classification problems with integer 

labels, the model was created using the Adam optimizer, which is efficient with sparse 

gradients and non-stationary goals, and the sparse categorical cross-entropy loss function. 

Training focused on accuracy, the major performance parameter [10,11]. 
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Figure 11. LSTM model accuracy and loss variation during the training process. 

Training lasted 18 epochs with early pausing to prevent overfitting. If the model’s 

validation performance didn’t improve after five epochs, training would end. By keeping 

the algorithm from learning noise or extremely particular patterns from the training set, 

it generalizes effectively to unknown PSL gesture data. 

5.3.3. Results 

Table 4 shows the LSTM model’s accuracy and loss throughout training, test, and 

validation datasets. Figure 12 shows training and validation confusion matrices. 

Table 4. LSTM model Performance. 

Metric/Observation Result/Description 

Training Accuracy 98.4% 

Validation Accuracy 95.6% 

Test Accuracy 94.9% 

Training Loss 0.08 

Validation Loss 0.12 

Misclassified Gestures "ذ" → "ظ" or "ز" (due to similar finger shapes) 

Cause of Confusion Low resolution of flex sensors for subtle finger configurations 

Sensor Overlap Observed s1/s2 values overlapping; some sensor outliers 
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Figure 12. Confusion matrices LSTM model. 

The LSTM model classified the validation dataset with good accuracy and balanced 

predictions. The model may mistake the PSL sign for "ذ" → "ظ" or "ز". These signals are 

distinguished by subtle finger configurations, making flex sensors’ accuracy difficult. 

Figure 13 shows overlapping gesture distributions and outliers, which may lead to 

categorization uncertainty. Adding a more advanced finger-tracking sensor system that 

can capture fine-grained finger positions to the hardware is the same method as for the 

SVM model (Section 5.3.2). This would greatly enhance the model’s capacity to distin-

guish signals with identical hand orientations but different finger articulations. 
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Figure 13. overlapping of flex sensor data for gestures. 

Despite being trained and validated on the identical PSL gesture dataset, the SVM 

and LSTM models misclassified differently. The SVM uses feature-extracted summaries 

from time-series data, while the LSTM uses the complete sequential input, which may 

explain this mismatch. Thus, each model learns from separate temporal and spatial ges-

ture inputs, resulting in complementing PSL recognition strengths and limitations. 

6. Real-Time Applications 

The learned machine learning model was incorporated into a real-time PSL identifi-

cation system. Figure 14 shows the whole real-time implementation pipeline flow. 

The algorithm loops until stopped by the user. Initial sensor data capture from the 

Arduino-based glove comprises flex sensor and IMU measurements. To guarantee de-

pendability, incoming data is examined for mistakes and missing information. 
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Figure 14. Flowchart of the real-time prediction application. 

After validation, the LSTM model predicts the PSL alphabet letter or word in real 

time using sensor inputs. These predictions are processed to produce words and sentences 

based on sign sequence and timing. 

Next, the raw output is transferred to Gemini [13], a text-refinement module that cor-

rects grammatical and structural errors in deaf sign language communication, including 

direct translation artifacts from PSL to Urdu or English syntax. 

The improved text is then transferred to a text-to-speech (TTS) system [14] to vocalize 

the statement. This end-to-end architecture allows real-time translation from Pakistan 

Sign Language to spoken language, helping Pakistani deaf and hard-of-hearing people 

communicate. 

This flow’s algorithms and processing stages are discussed in the next section. 

6.1. Arduino Error Handling and Machine Learning Prediction 

By collecting sensor data from the receiver Arduino module, the laptop processing 

unit is crucial to the PSL identification system. Flex sensor (finger positions) and IMU 

(hand orientation and movement) measurements from the sensory glove worn by the PSL 

sign performer are wirelessly communicated. 

The technique checks for 12 comma-separated float values in a data packet to ensure 

its completion. They represent the 4 quaternion components (q0–q3), 3 accelerometer com-

ponents (ax, ay, az), and 5 calibrated flex sensor values (s1–s5). 

The system discards incomplete or faulty data packets and waits for the next valid 

reading. After confirming a successful reading, the program collects 75 full and valid read-

ings, representing 1.5 s of signing activity at 50 Hz. 

The data is reorganized into a 75 × 12 matrix to meet LSTM model input criteria. This 

redesigned matrix lets the model distinguish PSL gesture timing patterns and predict the 

signed letter or word. 

6.2. Constructing Sentences 

The system verifies sign confidence after the LSTM model processes the input matrix 

and predicts. The prediction is reliable and utilized to create Pakistan Sign Language 

words and phrases if the confidence level is greater than 0.85. These validated signals are 

sequenced to help the system comprehend continuous signing as text. 
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If the confidence score drops below 0.85, the algorithm discards the forecast and 

starts over to collect sensor data. This method improves PSL identification accuracy and 

reliability, especially in real-time situations where misclassification might impair commu-

nication. 

6.2.1. Constructing Words from Letters 

The letter buffer stores expected gestures that are PSL letters, not control signs like 

‘space’, ‘p’ for pause, or ‘n’ for noise. This buffer stores recognized letters that compose a 

word. 

If the expected gesture is ‘space’ and the letter buffer is not empty, the algorithm 

connects the letters to form a word. That word goes into the word buffer, which organizes 

words for sentences. The letter buffer is cleaned after storing the word to receive the next 

anticipated letters. 

6.2.2. Constructing Sentences from Words 

The word buffer stores expected gestures that are not control signs (‘ ’, ‘p’, or ‘n’) and 

do not represent a single letter as whole word gestures. 

If the expected gesture is ‘p’ (pause) and the word buffer is not empty, the algorithm 

concatenates the words to produce a sentence. Gemini then polishes this statement. Clear-

ing the word buffer prepares it for the following phrase. 

6.2.3. Hand Resting 

The projected gesture of ‘n’ is eliminated since it indicates a resting or neutral hand. 

The system does not save the forecast and returns to the Arduino input stage for new 

sensor data. 

6.3. Sentence Correction with Gemini 

Google’s Gemini LLM understands and generates human-like text from numerous 

inputs [13]. It provides grammatically accurate and relevant replies using powerful natu-

ral language processing. Gemini’s open API makes it appropriate for many applications, 

including deaf aids. 

Gemini supports Urdu, which is important for this Pakistan Sign Language project. 

Sign language conveys meaning well, but its translation into written or spoken language 

typically lacks grammatical structure. PSL uses “I go market” whereas Urdu uses “ میں   

 ”.بازار جا رہی ہوں

Gemini helps refine translated outputs into well-structured, flowing language. This 

eliminates communication failures and deaf people feeling ashamed or misunderstood. 

After correction, a text-to-speech generator reads the statement. 

This project for Gemini uses an Urdu prompt: 

آپ اپنے بہرے ساتھی کے لیے ترجمہ کرتے ہیں۔ آپ کو اسُ کے ضروری الفاظ سے ایک مربوط اور بامعنی جملہ “

بنانا ہوگا۔ براہِ کرم نوٹ کریں کہ الفاظ میں املا کی غلطیاں یا نامناسب الفاظ ہو سکتے ہیں، لہٰذا آپ کو معنی کی بنیاد پر 

 ”درست جملہ تیار کرنا ہوگا۔

6.4. Text-to-Speech Generator 

This document uses Google’s gTTS service for TTS conversion [14]. Urdu support 

made this service ideal for a Pakistan Sign Language (PSL)-based communication system. 

Free and limitless access is another benefit of gTTS for systems that need constant use. 

Other TTS systems generate more lifelike and expressive voices, although most 

charge or have restricted usage options. 

After the machine learning model identifies PSL motions and the Gemini language 

model corrects the phrase for syntax and clarity, gTTS outputs the sentence as spoken 
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audio. Deaf people can clearly converse with hearing people. The system then returns to 

input to accept more gestures, generate new phrases, and continue the discussion in real 

time. 

6.5. Timing Analysis 

The time efficiency of each gesture recognition step may be determined using statis-

tical data from repeated user trials of the Pakistan Sign Language (PSL) recognition sys-

tem in real time. 

The median Arduino data collection time (75 data points) is 1.586 s. Wireless trans-

mission delays and packet loss cause small differences from the predicted 1.5 s. 

The LSTM model processes input and predicts gestures in 0.14 s after data collection. 

To ensure clarity and system readiness, the following motion is captured after a 0.5-s wait 

to tell the user. 

A typical PSL gesture recognition cycle takes 2.226 s. 

Take the example of a user signing “Hello, my name is Tabassum. I am going to mar-

ket 

“ ہوں رہی جا بازار میں۔ ہے   تبسم نام میرا ،  ہیلو  

The PSL gesture-based system requires the user to do the following sequence: “p, 

Hello, name, T, A, B, A, S, U, M me, market, p” where “p” is the punctuation or sentence-

completion gesture. 

Ten motions take 22.26 s (based on an average of 2.226 s per gesture). This estimate 

assumes a smooth process without Gemini-filtered low-confidence predictions or misclas-

sifications. 

The last ‘p’ gesture activates text-to-speech (TTS) after the gesture sequence. For a 

brief statement, the system requires ~3.62 s to comprehend and speak it. However, sen-

tence length and complexity may affect its time. 

7. Discussion 

We outperformed previous research in model performance and evaluation. Unlike 

many earlier studies, our system was trained using 47 PSL gestures, including static (let-

ter) and dynamic (word) signals. Our technique works better in real life with additional 

data. 

Our real-time sensory glove technology transforms PSL motions into spoken Urdu, 

expanding prior studies. A glove-based technique avoids cameras and cumbersome hard-

ware. Its little weight, simplicity of use, and natural hand movement let deaf individuals 

communicate daily. 

The system uses IMU and flex sensor data and deep learning models like LSTM and 

SVM-FE for good recognition accuracy. Flex sensors can miss small finger motions, thus 

there are still some restrictions. Misclassifications may ensue. EMG (Electromyography) 

sensors for muscle signals or MPU9250 sensors on each finger for orientation tracking may 

help. 

The method does not monitor hand location relative to the body or other hand, which 

is essential for capturing PSL’s grammatical structure. Some PSL signals use hand location 

or two-hand interactions for context. 

Both test and validation accuracy were marginally higher for the LSTM model than 

the SVM-FE. SVM-FE is still an excellent choice for resource-constrained applications be-

cause to its decreased computing load. Table 5 summarizes results. 
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Table 5. summarizes results. 

Criteria SVM-FE Model LSTM Model 

Model Type Support Vector Machine Recurrent Neural Network (LSTM) 

Input Format 72-dimensional feature vector 75 × 12 time-series matrix 

Training Accuracy 97.8% 98.4% 

Validation Accuracy 94.2% 95.6% 

Test Accuracy 93.6% 94.9% 

Prediction Speed Fast Moderate 

Computational Load Low Medium to High 

Temporal Context Handling No Yes 

Best Use Case Mobile, low-power devices Real-time, dynamic gesture understanding 

Sensitivity to Noise Higher (smooth features) Moderate (benefits from temporal smoothing) 

Scalability Limited High 

LSTM is more scalable and suitable for adding more complicated movements and 

terminology. However, the SVM-FE model may work for low-power devices like mobile 

phones and embedded systems. 

Despite high real-time performance and precise gesture-to-speech translation, the 

system only offers one-way communication from deaf to hearing users. Future systems 

should use voice recognition and animated PSL avatars or video-based interpretation for 

speech-to-sign translation to facilitate two-way communication. 

For improved system effectiveness in Pakistan, future study should aim to: 

• Increase PSL dataset quantity and variety to reduce latency. 

• Improving recognition using Transformer-based models. 

• Enhancing hardware ergonomics for daily usage. 

• Supporting Urdu linguistic subtleties and regional PSL variants. 

This research establishes a good foundation for PSL-based communication tools but 

requires additional refinement to properly overcome the communication gap between 

deaf and hearing Pakistanis. 

8. Conclusions 

This study tries to solve communication hurdles for deaf people. This research de-

scribes a real-time Urdu Sign Language Recognition (SLR) system using a sensory glove 

and machine learning algorithms. We discuss contemporary SLR technologies, our da-

taset’s Urdu sign motions, and the system’s hardware architecture and model design. The 

dataset and models are assessed for real-time gesture-to-spoken language translation. We 

also address system enhancements, including hardware restrictions and model upgrades, 

and future development. This study lays the groundwork for practical SLR systems, but 

it may be expanded and refined to better serve users and enhance sign language recogni-

tion technology. 
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