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Abstract

This research presents a novel, real-time Pakistani Sign Language (PSL) recognition sys-
tem utilizing a custom-designed sensory glove integrated with advanced machine learn-
ing techniques. The system aims to bridge communication gaps for individuals with hear-
ing and speech impairments by translating hand gestures into readable text. At the core
of this work is a smart glove engineered with five resistive flex sensors for precise finger
flexion detection and a 9-DOF Inertial Measurement Unit (IMU) for capturing hand ori-
entation and movement. The glove is powered by a compact microcontroller, which pro-
cesses the analog and digital sensor inputs and transmits the data wirelessly to a host
computer. A rechargeable 3.7 V Li-Po battery ensures portability, while a dynamic dataset
comprising both static alphabet gestures and dynamic PSL phrases was recorded using
this setup. The collected data was used to train two models: a Support Vector Machine
with feature extraction (SVM-FE) and a Long Short-Term Memory (LSTM) deep learning
network. The LSTM model outperformed traditional methods, achieving an accuracy of
98.6% in real-time gesture recognition. The proposed system demonstrates robust perfor-
mance and offers practical applications in smart home interfaces, virtual and augmented
reality, gaming, and assistive technologies. By combining ergonomic hardware with in-
telligent algorithms, this research takes a significant step toward inclusive communication
and more natural human-machine interaction.

Keywords: sensory glove; hand gesture recognition; machine learning; deep learning;
long short-term memory (LSTM)

1. Introduction

Many deaf and speech-impaired Pakistanis struggle to communicate and socialize.
Technologies that make communication easier and more inclusive are needed to reduce
social isolation and access to services and opportunities [1].

More than 120 sign languages exist, including American, Indian, Italian, and Paki-
stan Sign Language (PSL) [2]. Most Sign Language Recognition (SLR) systems interpret
hand motions based on their attributes. In PSL, the SLR system may produce text on a
screen or speech on a speaker device, improving communication for Pakistan’s deaf and
hard-of-hearing [3-6].
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Recently, deep learning architectures have achieved state-of-the-art performance on
several computer vision problems [7,8]. SLR system design using a Convolutional Neural
Network (CNN) may be adjusted for Pakistan Sign Language to increase identification
accuracy and usability [3].

Most Sign Language Recognition (SLR) systems use sensor-based, image-based, or
hybrid techniques [2-6]. The first method fails to capture the hand’s location relative to
the other hand and body, which is crucial to comprehending PSL movements. The second
option requires the camera to be in front of the user, which might hinder mobility. This
limitation might make it difficult for users to manage the camera while doing signs in real
life. Due to illumination and field of vision issues that might impact accuracy and con-
sistency, this technique is unsuitable. Users may find the hybrid technique impractical for
real-life talks since it requires a glove and camera. This configuration is both expensive
and computationally intensive, limiting its acceptance and development.

Our unique Pakistan Sign Language (PSL) identification system uses a sensory glove
and machine learning. This strategy makes communication more natural and effective
than previous methods. The proposed SLR system recognizes static and dynamic PSL ges-
tures, incorporating a wider range of signs and supporting the development of a real-time
application that predicts signs, improves sentence grammar, and converts them into spo-
ken Urdu sentences.

The device uses a sensory glove with an Inertial Measurement Unit (IMU) sensor
(MPU9250) to track hand motions and orientation and flex sensors to quantify finger
bending. The wireless glove transmits data to a processing unit without physical connec-
tions to allow user movement. PSL gestures are predicted using SVM-FE and LSTM ma-
chine learning models on the obtained data. Gemini is used to fix grammatical problems
and mispredictions in the produced phrases, and Google Text-to-Speech (gTTS) in Urdu
reads the result.

The paper’s structure follows. SLR systems are reviewed in Section 2. Section 3 de-
scribes the Pakistan Sign Language motions used to build the dataset. This study’s hard-
ware and machine learning architectures are described in Section 4. Section 5 analyzes the
dataset and reviews the machine learning models. Section 6 explains the real-time trans-
lation of PSL motions into spoken words. In Section 7, we evaluate our architecture, mod-
els, and real-time implementation and suggest improvements. Section 8 ends with obser-
vations.

2. Related Work

As illustrated in Figure 1, a Sign Language Recognition (SLR) system may be imple-
mented utilizing a sensor-based, image-based, or hybrid technique [2—-6].

A glove with many sensors and connections is worn in the sensor-based system ap-
proach. The system tracks and records hand and finger motions with these sensors. The
computer receives finger bending, motions, orientation, rotation, and hand position data
for interpretation. This method is mobile and accurate in gesture recognition. It lacks facial
expressions and emotional clues, which Pakistan Sign Language (PSL) uses to convey
complex meanings and improve communication.

A glove full of sensors and cables is not needed in the image-based method. This
technology captures photos with a camera and recognizes PSL motions using computer
vision and image processing. This method, which uses only a camera and CPU to con-
struct a recognition system, is popular because to its simplicity and implementation. But
continual camera alignment can disrupt the natural flow of discussion and hurt the user
experience, especially in dynamic, real-world environments.
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Figure 1. Main approaches for SLR system.

The third way, the hybrid strategy, combines glove- and camera-based benefits. Mu-
tual error correction improves recognition accuracy and system dependability. However,
like the image-based system, this solution has mobility issues and may not be suitable for
Pakistani daily conversation.

A new Pakistan Sign Language (PSL) recognition method is presented here. This sug-
gested system addresses the gestures, structure, and communication demands of Paki-
stan’s deaf and hard-of-hearing people, making it more practical, real-time, and efficient
than current methods).

3. Urdu Signs Overview

This section introduces the Pakistan Sign Language (PSL) movements used to build
the dataset, which comprise static gestures for letters and dynamic gestures for words. For
real-time recognition and phrase creation, many new control gestures were included.
These are ‘n’ to signal a resting hand, “space’ (" “) to combine letters into words, and ‘p’ to
concatenate words into a phrase and speak it. The package comprises the PSL alphabet,
three control signs (‘space’, ‘n’, and ‘p’), and 16 dynamic signs for typical PSL words. This
yields 47 distinct indications sample shown in Figure 2.

Figure 2. Sample Urdu signs used in the dynamic dataset.

4. Methodology
4.1. Block Diagram

The sensory glove system efficiently translates Pakistan Sign Language (PSL) into
spoken Urdu using sensors and microcontrollers. Pakistani deaf and hard-of-hearing peo-
ple can better communicate by interpreting PSL signals, creating grammatically accurate
words, and speaking them.

Figure 3 shows the transmitter and receiver, which make up this work’s system. The
transmitter system uses a lightweight, wearing glove with sensors to record PSL hand
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gestures and motions. The receiver receives this data wirelessly and utilizes machine

learning techniques to properly forecast the user’s sign. The algorithm then generates log-

ical phrases from these signals and speaks them in real time in Urdu.
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Figure 3. Transmitter—receiver block diagram.

4.2. Sensory Glove or Transmitter System

Figure 4 shows the sensory glove system’s main components for Pakistan Sign Lan-

guage (PSL) identification. An Arduino microcontroller [9] interacts with five flex sensors

to detect finger flexing and deliver finger locations, which is needed for recognizing static

PSL movements.

Figure 4. Picture of the actual sensory glove.

The glove uses an MPU9250 IMU to track hand orientation and movement. This sen-

sor’s accelerometer, gyroscope, and magnetometer data are essential for dynamic PSL sign

recognition. This study tracks hand mobility with accelerometer data. Euler angles can

affect hand orientation, but axis alignment can cause gimbal lock. Instead of gimbal lock,

quaternions express 3D rotations with four components (one scalar and three imaginary),

ensuring stability and accuracy.
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Startup calibration ensures the IMU sensor works correctly and provides accurate
results. After turning on the glove, the user must calibrate the magnetometer with a fig-
ure-8 motion. User lays hand flat and motionless on surface to calibrate accelerometer and
gyroscope. This method keeps PSL gesture recognition orientation and motion data con-
stant. The Arduino IDE’s FastIMU package automates this calibration, making it simple
and dependable.

Manufacturing and finger features can affect flex sensors, which detect finger bend-
ing. Flex sensor calibration standardises readings. First, the user must completely flex
their fingers for 5 s. Arduino takes many measurements and calculates the median to de-
termine flexed. Next, the user completely expands their fingers and holds for 5 s while
taking further readings. The minimum and maximum reference points for each finger are
then determined using the median values for flexed and stretched states.

Scalibrated sensor value is calculated using the following formula after recording
these reference values:

Raw Value — Rawmin)

Calibrated Svalue = ( 1)

Raw,,, — Raw .,

Raw Value is the raw sensor measurement, Rawmax and Rawmin are the median values
for fully stretched and flexed positions, respectively. This algorithm normalizes flex sen-
sor data from 0 to 1023 to a defined range of -1 to 1, guaranteeing uniform readings across
all sensors, independent of finger or sensor differences.

The five calibrated flex sensors now give precise and consistent finger position data,
which is important for Pakistan Sign Language gesture detection. The whole data format
contains these parameters:

The data includes quaternion components (q0, q1, q2, q3) for 3D hand orientation,
accelerometer readings (ax, ay, az) for hand movement along X, Y, and Z axes, and stand-
ardized measurements (s1, s2, s3, s4, s5) for each finger’s flex sensors.

The receiver module receives these sensor data wirelessly from an NRF24L01 trans-
ceiver (Figure 5). Due to the NRF24L01’s 32-byte payload constraint, the data is formatted
into a string and delivered in three packets: quaternion, accelerometer, and flex sensor.
The transmitter delivers this structured data string at set intervals via the RF connection
to the receiver, providing real-time hand gesture data.

SpassasARAnnS

- ‘,f'r~':.

Figure 5. NRF24L01 transceiver.

A tiny 3.7 V battery powers the glove-based device, making it portable and easy to
use for real-world PSL applications including daily communication, teaching, and public
engagement.

4.3. Receiver System

The receiver mechanism in Figure 3 continually listens for transmitter data packets.
Initialized to listen for signals, the NRF24L01 wireless module stays active until it gets all
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data. The receiver algorithm waits until all three data batches —quaternion (orientation),
accelerometer (movement), and flex sensor (finger position) —are received before merging
them into a data packet.

Pakistan Sign Language (PSL) gesture recognition requires synchronized and reliable
incoming data, which this structured reception provides. The processing unit analyzes the
complete data set to forecast PSL indications using machine learning methods. After rec-
ognizing signs, a text-to-speech technology converts a statement into spoken Urdu, allow-
ing deaf and hearing people to communicate.

4.4. Proposed SVM with Feature Extraction (SVM-FE) Model

SVM [10] and FE are successful classification methods for Pakistan Sign Language
(PSL) gesture recognition. This combination streamlines complicated sensor data into im-
portant characteristics, increasing the SVM’s PSL sign recognition. Features extraction de-
creases input data dimensionality and highlights the most essential gesture properties,
helping the SVM create clearer decision boundaries and improve classification accuracy.

For sequential PSL data, summarizing features helps the model grasp motion pat-
terns and temporal trends in static and dynamic signals.

Table 1. presents the architecture of the SVM-FE model.

Component

Description

Input Features
Feature Extraction

Raw sensor data from 12 channels: q0—q3, ax-az, s1-s5
For each channel: Mean, Std, Min, Max, FFT Magnitude, FFT Std — 72 features total

Normalization StandardScaler applied to all features (zero mean, unit variance)
Classifier Support Vector Machine (SVM) with linear kernel
Output Gesture class probabilities (47 PSL classes)

To categorize PSL signals, the SVM-FE model uses a linear kernel to produce a
straight-line (or hyperplane) decision boundary in feature space. The model outputs prob-
ability estimates for each class instead of only the most likely label. This probabilistic out-
put aids ambiguous gesture decision-making.

StandardScaler scales input characteristics to 0 and 1 for mean and standard devia-
tion. Normalization balances features (e.g., accelerometer vs. flex sensor readings) and
speeds model convergence during training, boosting identification performance.

4.5. Proposed LSTM Model

LSTM networks [11,12] handle sequential data, which is essential for identifying Pa-
kistan Sign Language (PSL), especially dynamic motions. They excel in time-series appli-
cations like gesture sequences, speech recognition, and natural language processing be-
cause their design learns and retains long-term relationships.

The LSTM model architecture for PSL gesture prediction in our study is shown in
Figure 6.
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Figure 6. LSTM model architecture.

The sequential neural network model uses bidirectional LSTMs. Initial input layer
has 75-time steps and 12 characteristics per time step. Quaternion components (q0, q1, g2,
g3), accelerometer measurements (ax, ay, az), and flex sensor data (s1, s2, s3, s4, s5) capture
PSL hand gesture motion and orientation.

A 128-unit bidirectional LSTM layer returns sequences after the input. This design
lets the model learn gesture patterns in both forward and backward temporal directions,
improving context awareness. After that, a 10% dropout layer randomly disables a per-
centage of neurons during training to minimize overfitting and promote generalization.

Next, a second 128-unit bidirectional LSTM layer is added, designed to not return
sequences and output a single final state summing the input sequence’s learnt infor-
mation. Another 10% dropout layer reduces overfitting risk.

Non-linearity from a dense layer with 128 units and a tanh activation function lets
the model record complicated gesture data correlations. The output layer is a thick soft-
max layer with the same number of units as PSL gesture classes. For multiclass classifica-
tion and interpretable PSL sign predictions, the softmax function converts the final output
into a probability distribution.

Training was stopped early to prevent overfitting. This method stops training if the
model’s validation loss doesn’t improve after a certain number of epochs. This method
stops the model from remembering noise or highly particular patterns in the training data
and enhances its generalization to fresh PSL inputs.

Layer sizes and dropout rates were chosen to balance complexity and generalization
in the model architecture to achieve consistent performance on unseen data during vali-
dation.

5. Experiments and Results
5.1. Dataset

Data from one participant was used to record dynamic movements for 47 Pakistan
Sign Language (PSL) letters and words. The participant purposefully altered hand speed
and location while completing gestures to simulate real-world variability in PSL usage by
distinct users under varying ambient and physical situations to guarantee the system can
generalize across users. This technique plus a comprehensive calibration method reduce
individual-specific variability and improve recognition performance.

The IMU sensor data provides normalized quaternion measurements (-1 to 1), indi-
cating 3D hand orientation. Accelerometer data, often ranging from -2 to +2, was kept
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unnormalized to retain important information like abrupt hand movements or impacts
during complicated PSL motions. These inherent changes in accelerometer data help the
algorithm learn and distinguish swift or powerful motions that normalization would re-
duce.

Flex sensor data is calibrated and standardized within a -1 to 1 range to account for
finger variations and sensor discrepancies. This standardization allows the algorithm to
focus on gesture patterns rather than signal fluctuations, enhancing gesture recognition
across users.

No data augmentation was done on this dataset. This was done to retain PSL ges-
tures’ naturalness. Artificial data may provide inconsistencies or abnormalities that hin-
der model learning. The dataset provides a clean, realistic basis for PSL gesture recogni-
tion model training.

For each PSL sign, 75 time steps were captured at 50 Hz, recording a 1.5-s gesture
frame (75 time steps + 50 Hz = 1.5 s). Each time step saves 12 features quaternion orienta-
tion (q0, q1, q2, g3), accelerometer measurements (ax, ay, az), and calibrated flex sensor
values (s1-s5)—as a single row in a CSV file labeled with the PSL sign.

There are 130 readings per sign, 100 for training, 15 for testing, and 15 for validation.
The dataset is balanced over all 47 PSL classes, preventing gesture bias. This structure
yields 6110 gesture examples (130 readings x 47 signs), providing a broad dataset that
accurately captures the dynamic and expressive nature of PSL motions. Table 2 shows a
dataset sample with data format and labels.

Table 2. Sample of the dynamic dataset.

q0 ql q2 q3 ax ay az s1 s2 s3 s4 s5
098 005 002 018 010 -002 098 -04 -02 01 03 0.0
097 006 001 020 012 -001 09 -04 -02 01 03 0.0
098 004 o001 019 011 -003 097 -04 -02 01 03 00
097 005 002 021 013 -002 09 -04 -02 01 03 00
098 006 001 018 010 -002 099 -04 -02 01 03 0.0

The box plot in Figure 7 shows accelerometer and flex sensor data-based PSL gesture
class distribution. A box plot (sometimes called a box-and-whisker plot) uses five sum-
mary statistics minimum, first quartile (Q1), median, third quartile (QQ3), and maximum
to show data distribution and symmetry. The central box contains the interquartile range
(IQR), the middle 50% of the data, from Q1 to Q3. The smallest and greatest values within
1.5 times the IQR are “whiskers”; data points beyond this range are outliers.

The box plot shows each gesture’s sensor reading distribution and variability in this
PSL dataset. It shows how motions create discrete sensor patterns, helping the model cat-
egorize them.
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Figure 7. Box plot of multiple sensor values across different gestures.

A crucial discovery from the plots is that broader or taller boxes in either the accel-
erometer or flex sensor data imply a higher standard deviation, frequently linked with
greater movement or unpredictability in the gesture. The accelerometer plots of static PSL
movements like letter representations reveal no or very narrow boxes, indicating negligi-
ble hand movement. Dynamic gestures, like as the PSL sign for “aSle »3ull” (Peace be upon
you), have bigger boxes in accelerometer data because to their strong motion.

Commonly, motions with little sensor reading fluctuation (like static signals) have
more outliers. The very sensitive sensors catch slight involuntary hand movements or user
changes that cause these outliers.

Note that all gesture class box plots reveal no abnormal data patterns, indicating con-
stant and reliable sensor performance throughout data collection. No unexpected results
or dramatic deviations demonstrate that sensor calibration and system integrity were
maintained throughout the recording procedure, boosting dataset trustworthiness.

5.2. SVM-FE Model Results
5.2.1. Data Preprocessing for SVM-FE Model

To summarise time-series data from the dynamic gesture dataset and provide se-
quential PSL gesture data for SVM training, feature extraction is essential. Statistical and
frequency-based characteristics are derived from raw sensor sequences to create a com-
pact, learnable format.

Feature extraction for the PSL dataset involves determining the mean, standard de-
viation, minimum, and maximum for each sensor signal over 75 time steps. Each signal is
Fast Fourier Transformed (FFT) to extract the amplitude and standard deviation of fre-
quency components to reflect hand movement pattern variations over time. These features
show PSL gesture temporal and spectral properties, which are essential for SVM classifi-
cation.
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After collecting 75 gesture data points, the system computes median, standard devi-
ation, minimum, maximum, FFT magnitude, and FFT standard deviation for each of the
12 sensor channels (q0—q3, ax—az, s1-s5). The gesture sequence is summarized into a com-
pact, useful 72-dimensional feature vector (6 features x 12 sensors) for SVM input.

This feature engineering method helps the SVM model discover unique PSL gesture
patterns and changes, enhancing classification performance and resilience across static
and dynamic sign inputs.

5.2.2. Results

Table 3 shows SVM-FE model accuracy on training, test, and validation datasets. The
confusion matrices for this model’s training and validation datasets are shown in Figure
8.

Table 3. SVM-FE model Performance.

Metric/Observation Result/Description
Training Accuracy 97.8%
Validation Accuracy 94.2%
Test Accuracy 93.6%
Misclassified Static Gestures N A S LSS
Cause of Confusion Similar hand angles, overlapping quaternion and accelerometer values
Sensor Overlap Example Flex 2-3 overlap for "."/")"; Flex 1 overlap for "z"/"¢"

The SVM-FE model has high accuracy and a balanced confusion matrix on the vali-
dation dataset. The model’s ability to mistake static PSL motions was a major drawback.

nn “"__r

Often, “.” is misinterpreted as """ in the test dataset and “z” as “z” in the validation

dataset.

Fgure 8: Confusion Matrix (SVYM-FE Model)
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Figure 8. Confusion matrices of the SVM-FE model.
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These movements are motionless and have identical hand angles, which provides
comparable quaternion data and reduces accelerometer activity, causing misunderstand-
ing. Flex sensor data is the main differentiator here. Examining SVM extracted feature
histograms, flex sensor readings (particularly flex 2 and 3 for “” and “ “ in Figure 9 and
flex 1 for “z” and “z” in Figure 10) show overlap. This overlap seems to cause most cate-
gorization errors for these motions.

More training data can increase variability and help the model learn finer differences.
An improved sensor system that captures more accurate and consistent finger locations is
the better and longer-term option. Flex sensors include bending sensitivity, poor angular
resolution, and inability to directly monitor finger orientation, which limits their accuracy.

Figure 9: Feature Distributions of Flex Sensor 52
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Figure 9. Histogram of feature-extracted data from flex sensors 2 and 3 for gestures.

More sophisticated sensing technologies including capacitive sensors, optical bend
sensors, and multi-axis finger joint trackers might record tiny finger motions and gesture
information. This will greatly enhance PSL gesture recognition accuracy, especially for
static signals distinguishable just by finger location, improving system performance and
robustness.
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Figure 10. Histogram of feature-extracted data from flex sensor 1 for gestures.

5.3. LSTM Model Results
5.3.1. Data Preprocessing for LSTM Model

Data preparation prepares the dataset for training the LSTM model, which learns
temporal relationships from sequential data. Section 5.1 describes each gesture instance
in the dataset as 75 time steps with 12 attributes and a single label describing the motion.

To train the LSTM model, raw data is molded into a 75 x 12 matrix for gesture sam-
ples. Each row represents a time step, and each column represents one of 12 sensor char-
acteristics (quaternions, accelerometer data, and flex sensor readings). This modification
preserves gesture data temporal structure, allowing the model to capture dynamic pat-
terns. Each matrix is coupled with its gesture label to create a dataset for supervised LSTM
training.

5.3.2. LSTM Model Training

Figure 11 shows the accuracy and loss variation for the training and validation da-
tasets during LSTM model training. For multi-class classification problems with integer
labels, the model was created using the Adam optimizer, which is efficient with sparse
gradients and non-stationary goals, and the sparse categorical cross-entropy loss function.
Training focused on accuracy, the major performance parameter [10,11].



Eng. Proc. 2025, x, x FOR PEER REVIEW 13 of 20

Figure 11a Lsirv’d Model Accuracy over ;poghs qung llb'}§m Model Loss over Epochs

10
®~ Training Accuracy ’/0 144-= o~ Training Loss
#- Validation Accuracy ..-0 a - Validation Loss
091 po =
s -
. 124 & .
,~‘ a -~ I
0.8 - - “\ -
/,»' » 10 e =
o~ 5 “u.
‘<
= 0.7 r Y
2 » Y w 0.8 N\, <
3 TP g '“\.
o B’ > - X
4 06 _/. z * .
o 0.6
= 0614
_./C ,. NN
» - \
05 4 0.4 .
-y L] o] —n
L 5 . b
04 - 014 A
.
03 v v v 0.0 v v ' ~—
2.5 50 75 100 12.5 150 175 200 25 50 75 100 125 50 17.5 20,0
Epoch Epoch

Figure 11. LSTM model accuracy and loss variation during the training process.

Training lasted 18 epochs with early pausing to prevent overfitting. If the model’s
validation performance didn’t improve after five epochs, training would end. By keeping
the algorithm from learning noise or extremely particular patterns from the training set,
it generalizes effectively to unknown PSL gesture data.

5.3.3. Results

Table 4 shows the LSTM model’s accuracy and loss throughout training, test, and
validation datasets. Figure 12 shows training and validation confusion matrices.

Table 4. LSTM model Performance.

Metric/Observation Result/Description
Training Accuracy 98.4%
Validation Accuracy 95.6%
Test Accuracy 94.9%
Training Loss 0.08
Validation Loss 0.12

Misclassified Gestures

Cause of Confusion

Low resolution of flex sensors for subtle finger configurations
s1/s2 values overlapping; some sensor outliers

Sensor Overlap Observed

"L" N n'AH or")

"oen

(due to similar finger shapes)
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Figure 12. Confusion matrices LSTM model.
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The LSTM model classified the validation dataset with good accuracy and balanced

predictions. The model may mistake the PSL sign for "b" — "3" or ")". These signals are

distinguished by subtle finger configurations, making flex sensors’ accuracy difficult.

Figure 13 shows overlapping gesture distributions and outliers, which may lead to

categorization uncertainty. Adding a more advanced finger-tracking sensor system that

can capture fine-grained finger positions to the hardware is the same method as for the

SVM model (Section 5.3.2). This would greatly enhance the model’s capacity to distin-

guish signals with identical hand orientations but different finger articulations.
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Figure 13. overlapping of flex sensor data for gestures.

Despite being trained and validated on the identical PSL gesture dataset, the SVM

and LSTM models misclassified differently. The SVM uses feature-extracted summaries

from time-series data, while the LSTM uses the complete sequential input, which may

explain this mismatch. Thus, each model learns from separate temporal and spatial ges-

ture inputs, resulting in complementing PSL recognition strengths and limitations.

6. Real-Time Applications

The learned machine learning model was incorporated into a real-time PSL identifi-

cation system. Figure 14 shows the whole real-time implementation pipeline flow.

The algorithm loops until stopped by the user. Initial sensor data capture from the

Arduino-based glove comprises flex sensor and IMU measurements. To guarantee de-

pendability, incoming data is examined for mistakes and missing information.
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Figure 14. Flowchart of the real-time prediction application.

After validation, the LSTM model predicts the PSL alphabet letter or word in real
time using sensor inputs. These predictions are processed to produce words and sentences
based on sign sequence and timing.

Next, the raw output is transferred to Gemini [13], a text-refinement module that cor-
rects grammatical and structural errors in deaf sign language communication, including
direct translation artifacts from PSL to Urdu or English syntax.

The improved text is then transferred to a text-to-speech (TTS) system [14] to vocalize
the statement. This end-to-end architecture allows real-time translation from Pakistan
Sign Language to spoken language, helping Pakistani deaf and hard-of-hearing people
communicate.

This flow’s algorithms and processing stages are discussed in the next section.

6.1. Arduino Error Handling and Machine Learning Prediction

By collecting sensor data from the receiver Arduino module, the laptop processing
unit is crucial to the PSL identification system. Flex sensor (finger positions) and IMU
(hand orientation and movement) measurements from the sensory glove worn by the PSL
sign performer are wirelessly communicated.

The technique checks for 12 comma-separated float values in a data packet to ensure
its completion. They represent the 4 quaternion components (q0—q3), 3 accelerometer com-
ponents (ax, ay, az), and 5 calibrated flex sensor values (s1-s5).

The system discards incomplete or faulty data packets and waits for the next valid
reading. After confirming a successful reading, the program collects 75 full and valid read-
ings, representing 1.5 s of signing activity at 50 Hz.

The data is reorganized into a 75 x 12 matrix to meet LSTM model input criteria. This
redesigned matrix lets the model distinguish PSL gesture timing patterns and predict the
signed letter or word.

6.2. Constructing Sentences

The system verifies sign confidence after the LSTM model processes the input matrix
and predicts. The prediction is reliable and utilized to create Pakistan Sign Language
words and phrases if the confidence level is greater than 0.85. These validated signals are
sequenced to help the system comprehend continuous signing as text.



Eng. Proc. 2025, x, x FOR PEER REVIEW 17 of 20

If the confidence score drops below 0.85, the algorithm discards the forecast and
starts over to collect sensor data. This method improves PSL identification accuracy and
reliability, especially in real-time situations where misclassification might impair commu-
nication.

6.2.1. Constructing Words from Letters

The letter buffer stores expected gestures that are PSL letters, not control signs like
‘space’, ‘p’ for pause, or ‘n’ for noise. This buffer stores recognized letters that compose a
word.

If the expected gesture is ‘space’ and the letter buffer is not empty, the algorithm
connects the letters to form a word. That word goes into the word buffer, which organizes
words for sentences. The letter buffer is cleaned after storing the word to receive the next

anticipated letters.

6.2.2. Constructing Sentences from Words

Lroa

The word buffer stores expected gestures that are not control signs (*/, ‘p’, or 'n’) and
do not represent a single letter as whole word gestures.

If the expected gesture is ‘p’ (pause) and the word buffer is not empty, the algorithm
concatenates the words to produce a sentence. Gemini then polishes this statement. Clear-
ing the word buffer prepares it for the following phrase.

6.2.3. Hand Resting

The projected gesture of ‘n’ is eliminated since it indicates a resting or neutral hand.
The system does not save the forecast and returns to the Arduino input stage for new
sensor data.

6.3. Sentence Correction with Gemini

Google’s Gemini LLM understands and generates human-like text from numerous
inputs [13]. It provides grammatically accurate and relevant replies using powerful natu-
ral language processing. Gemini’s open API makes it appropriate for many applications,
including deaf aids.

Gemini supports Urdu, which is important for this Pakistan Sign Language project.
Sign language conveys meaning well, but its translation into written or spoken language
typically lacks grammatical structure. PSL uses “I go market” whereas Urdu uses “ ux
ool k"

Gemini helps refine translated outputs into well-structured, flowing language. This
eliminates communication failures and deaf people feeling ashamed or misunderstood.
After correction, a text-to-speech generator reads the statement.

This project for Gemini uses an Urdu prompt:

“ nlan inaly gl da g e Sl B (5 55 pn S el S G 5 S e S el o
b S e S Ol 13 (i 0 ) Clials U Gble S Sl e B AS o S Ergi a8 el g (K5 Uiy
A5 LS s ales Cans

6.4. Text-to-Speech Generator

This document uses Google’s gTTS service for TTS conversion [14]. Urdu support
made this service ideal for a Pakistan Sign Language (PSL)-based communication system.
Free and limitless access is another benefit of gTTS for systems that need constant use.

Other TTS systems generate more lifelike and expressive voices, although most
charge or have restricted usage options.

After the machine learning model identifies PSL motions and the Gemini language
model corrects the phrase for syntax and clarity, gITTS outputs the sentence as spoken
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audio. Deaf people can clearly converse with hearing people. The system then returns to
input to accept more gestures, generate new phrases, and continue the discussion in real
time.

6.5. Timing Analysis

The time efficiency of each gesture recognition step may be determined using statis-
tical data from repeated user trials of the Pakistan Sign Language (PSL) recognition sys-
tem in real time.

The median Arduino data collection time (75 data points) is 1.586 s. Wireless trans-
mission delays and packet loss cause small differences from the predicted 1.5 s.

The LSTM model processes input and predicts gestures in 0.14 s after data collection.
To ensure clarity and system readiness, the following motion is captured after a 0.5-s wait
to tell the user.

A typical PSL gesture recognition cycle takes 2.226 s.

Take the example of a user signing “Hello, my name is Tabassum. I am going to mar-
ket

“0s 0 DIk U - o e ol ) e ¢ Sl

The PSL gesture-based system requires the user to do the following sequence: “p,
Hello, name, T, A, B, A, S, U, M me, market, p” where “p” is the punctuation or sentence-
completion gesture.

Ten motions take 22.26 s (based on an average of 2.226 s per gesture). This estimate
assumes a smooth process without Gemini-filtered low-confidence predictions or misclas-
sifications.

The last ‘p” gesture activates text-to-speech (TTS) after the gesture sequence. For a
brief statement, the system requires ~3.62 s to comprehend and speak it. However, sen-
tence length and complexity may affect its time.

7. Discussion

We outperformed previous research in model performance and evaluation. Unlike
many earlier studies, our system was trained using 47 PSL gestures, including static (let-
ter) and dynamic (word) signals. Our technique works better in real life with additional
data.

Our real-time sensory glove technology transforms PSL motions into spoken Urdu,
expanding prior studies. A glove-based technique avoids cameras and cumbersome hard-
ware. Its little weight, simplicity of use, and natural hand movement let deaf individuals
communicate daily.

The system uses IMU and flex sensor data and deep learning models like LSTM and
SVM-FE for good recognition accuracy. Flex sensors can miss small finger motions, thus
there are still some restrictions. Misclassifications may ensue. EMG (Electromyography)
sensors for muscle signals or MPU9250 sensors on each finger for orientation tracking may
help.

The method does not monitor hand location relative to the body or other hand, which
is essential for capturing PSL’s grammatical structure. Some PSL signals use hand location
or two-hand interactions for context.

Both test and validation accuracy were marginally higher for the LSTM model than
the SVM-FE. SVM-FE is still an excellent choice for resource-constrained applications be-
cause to its decreased computing load. Table 5 summarizes results.
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Table 5. summarizes results.

Criteria SVM-FE Model LSTM Model
Model Type Support Vector Machine Recurrent Neural Network (LSTM)
Input Format 72-dimensional feature vector 75 x 12 time-series matrix
Training Accuracy 97.8% 98.4%
Validation Accuracy 94.2% 95.6%
Test Accuracy 93.6% 94.9%
Prediction Speed Fast Moderate
Computational Load Low Medium to High
Temporal Context Handling No Yes
Best Use Case Mobile, low-power devices Real-time, dynamic gesture understanding
Sensitivity to Noise Higher (smooth features) Moderate (benefits from temporal smoothing)
Scalability Limited High

LSTM is more scalable and suitable for adding more complicated movements and
terminology. However, the SVM-FE model may work for low-power devices like mobile
phones and embedded systems.

Despite high real-time performance and precise gesture-to-speech translation, the
system only offers one-way communication from deaf to hearing users. Future systems
should use voice recognition and animated PSL avatars or video-based interpretation for
speech-to-sign translation to facilitate two-way communication.

For improved system effectiveness in Pakistan, future study should aim to:

e Increase PSL dataset quantity and variety to reduce latency.

e Improving recognition using Transformer-based models.

e  Enhancing hardware ergonomics for daily usage.

e  Supporting Urdu linguistic subtleties and regional PSL variants.

This research establishes a good foundation for PSL-based communication tools but
requires additional refinement to properly overcome the communication gap between
deaf and hearing Pakistanis.

8. Conclusions

This study tries to solve communication hurdles for deaf people. This research de-
scribes a real-time Urdu Sign Language Recognition (SLR) system using a sensory glove
and machine learning algorithms. We discuss contemporary SLR technologies, our da-
taset’s Urdu sign motions, and the system’s hardware architecture and model design. The
dataset and models are assessed for real-time gesture-to-spoken language translation. We
also address system enhancements, including hardware restrictions and model upgrades,
and future development. This study lays the groundwork for practical SLR systems, but
it may be expanded and refined to better serve users and enhance sign language recogni-
tion technology.
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