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Abstract 

Autonomous vehicles need to explain their actions to improve reliability and build user 

trust. This study focuses on enhancing the transparency and explainability of the decision-

making process in such systems. A module named XAI-Interpreter is developed to 

identify and highlight the most influential factors in driving decisions. The module 

combines two complementary methods: Learned Attention Weights (LAW) and Object-

Level Attention (OLA). In the LAW method, images captured from the ego vehicle’s front 

and rear cameras in the CARLA simulation environment are processed using the Faster 

R-CNN model for object detection. GRAD-CAM is then applied to generate visual 

attention heatmaps, showing which regions and objects in the images affect the model’s 

decisions. The OLA method analyzes nearby dynamic objects, such as other vehicles, 

based on their size, speed, position, and orientation relative to the ego vehicle. Each object 

receives a normalized attention score between 0 and 1, indicating its influence on the 

vehicle’s behavior. These scores can be used in downstream modules such as planning, 

control, and safety. The module is currently tested in simulation. Future work will involve 

deploying the system on real vehicles. By helping the vehicle focus on the most critical 

elements in its surroundings, the Explainable Artificial Intelligence (XAI)-Interpreter 

supports more transparent and explainable autonomous driving systems. 

Keywords: XAI-Interpreter; autonomous driving; visual attention; GRAD-CAM; object-

level reasoning 

 

1. Introduction 

Autonomous vehicles play a key role in reshaping modern transportation systems in 

terms of safety, efficiency, and user experience. However, for these systems to be adopted, 

it is not enough for them to make correct decisions; they must also present these decisions 

in an explainable manner to the user. Transparency and clarity in decision-making 

processes are critical for building trust and ensuring the auditability of system behavior. 

At this point, XAI methods offer solutions to increase user trust by making the 

internal workings of autonomous driving systems visible. Techniques such as visual 

attention maps, object-based importance scoring, and attention weight interpretation are 

frequently used to demonstrate which inputs influenced the system’s decisions and how. 
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In the literature, various methods have been proposed to enhance the explainability 

of autonomous driving systems. Studies that utilize compact object-level representations 

instead of pixel-based visualizations have gained prominence. For example, the PlanT 

model proposed by Renz et al. enables faster and more efficient decision inference in the 

CARLA simulation environment compared to pixel-based approaches [1]. Chen and 

Krähenbühl introduced the “Learning from All Vehicles” approach, which improves 

driving performance by aggregating knowledge from different vehicles [2]. Nazat et al. 

presented the Multimodal-XAD model, which enhances explainability by combining 

bird’s-eye view (BEV) representations with natural language explanations [3]. 

Furthermore, the XAI-ADS framework by Selvarajan et al. enables explainable 

anomaly detection based on time-series data [4], while Yuan et al. proposed the RAG-

Driver model, which uses large language models to provide natural language 

explanations for driving actions [5]. Gao et al.’s VectorNet model improves explainability 

by offering graph-based driving predictions with object-level representations [6], and 

Kolekar and colleagues employed Grad-CAM after scene segmentation to produce visual 

explanations [7]. The work of Kim and Canny contributes to textual explanation of driving 

decisions and visualization of attention mechanisms [8,9]. Additionally, the systematic 

SafeX framework by Kuznietsov et al. helps classify existing XAI methods [10]. 

In this study, we present a module called the XAI-Interpreter, which integrates 

explainability as a core component of the system. This module utilizes two 

complementary methods to identify and visualize the factors influencing autonomous 

vehicle decision-making: LAW and OLA. In the LAW method, Grad-CAM is applied to 

objects detected via Faster R-CNN to generate attention maps, identifying the image 

regions that affect decisions [11,12]. The OLA method evaluates dynamic objects in the 

environment based on features such as velocity, position, and orientation. It then 

calculates a normalized attention score for each object, using these scores to inform the 

planning, control, and safety subsystems. 

The following sections of the paper detail the explainability-oriented V-model 

architecture and describe the implementation and outcomes of the XAI-Interpreter module. 

2. V-Model-Based Autonomous Driving Software Architecture 

A V-model-based autonomous driving software architecture, which incorporates an 

explainable AI layer, is presented in Figure 1 [13]. This structure consists of five main 

layers, each designed hierarchically to include a perception and an actuator module. The 

Human-Machine Interface (HMI) and Monitoring Module, located at the lowest level, not 

only enables user interaction but also ensures that the system operates with minimal error. 

While the information flow between layers is defined sequentially, the HMI and 

Monitoring Module is uniquely designed to communicate directly with modules across 

all layers. 

Based on the three main functional groups defined in the SAE J3016 standard by the 

Society of Automotive Engineers (SAE), the layers in the architecture can be classified as 

follows: 

• Operational: Sensors—Actuators, Sensor Interface—Actuator Control Layers 

• Tactical: Perception—Low-Level Controller, World Model—High-Level Controller 

Layers 

• Strategic: Explainable AI (XAI) Interpreter—XAI Planner Layer 

While the modules in the operational layer require high sampling rates, this 

requirement decreases for the tactical and strategic layers. In terms of computational load, 

the operational layer consumes fewer resources, whereas the strategic layer involves 

higher complexity and processing demand. 
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Figure 1. Autonomous Driving Software Architecture. 

As a result, this architectural design enhances both the explainability of autonomous 

decision-making processes and the system-level utilization of the advantages provided by 

connected environments. This integration especially improves driving safety in complex 

traffic conditions and enables effective cooperative operation between connected and non-

connected vehicles (CV and NCV). 

Simulation-Based Autonomous Driving Architecture 

The diagram presented in Figure 2 demonstrates how the developed software 

architecture is integrated in a unified manner. This simulation-based structure allows 

cooperative interactions between connected and non-connected vehicles to be modeled 

both in virtual environments and in parallel with physical hardware. The integrated 

architecture includes several core modules, which are detailed below: 

• Carla Sensors: Provides virtual sensor data that detects objects around the vehicle 

within the simulation environment. 

• V2X Communication Layer: Merges V2X data (e.g., position, speed, turn signals) 

from other vehicles in the simulation with Carla sensor data to improve situational 

awareness. 

• Vehicle Dynamics Model: Represents the physical motion of the vehicle, executing 

commands from perception and planning modules to steer the vehicle. 

• Carla Environment: Refers to the virtual environment where the simulation takes 

place, including road infrastructure and traffic elements. 

• Traffic Generator: Dynamically creates CVs, NCVs, and other vehicles in the 

environment to test different traffic scenarios. 

• XAI Interpreter: Interprets environmental conditions using perception and V2X 

data. It generates semantic information about traffic signs, surrounding vehicles, and 

environmental factors. 

• XAI Planner: Makes strategic decisions based on the output of the interpreter, such 

as yielding to NCVs at intersections, lane changing, or speed adaptation. 

• Motion Planning and Control: Converts strategic decisions from the XAI Planner 

into trajectory and velocity profiles, and forwards the result to the vehicle control 

module. 

• Human-Machine Interface (HMI): Represents interaction with the human driver in 

simulation scenarios by providing signals, information, and alerts. 
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Figure 2. Autonomous Driving Architecture in Simulation Environment. 

This architecture is integrated with the Carla simulation environment, ROS-based 

communication infrastructure, and real-time modules running on the Ubuntu operating 

system. Although simulated data is used instead of real-world sensor data, the V2X 

components of the architecture are developed to be fully compatible with physical 

hardware. 

Following this architectural overview, the next section discusses the detailed 

structure of the XAI Interpreter module, one of the core components responsible for 

ensuring the system’s explainability. 

3. XAI-Interpreter Module 

The XAI Interpreter is responsible for generating a semantic understanding of the 

environment by processing characteristic information such as traffic flow, inter-object 

relationships, and traffic signs located within the world modeling layer of the autonomous 

system. This module interprets environmental information by abstractly analyzing traffic 

rules, road topology, and dynamic environmental conditions. 

In the interpretation process, not only real-time observations but also historical traffic 

patterns are considered to predict future scenarios. By doing so, the potential movement 

direction and position of every object in the dynamic environment can be estimated, 

allowing the system to foresee possible collisions or dangerous situations in advance. 

Using this information, the system can issue early warnings to the driver or decision-

making modules, thereby enhancing safety and contributing to more optimal driving 

decisions. 

The XAI Interpreter generates these predictions using probabilistic models and 

directly transmits the results to the Planning module. The planning process, in turn, can 

produce more informed and safer routes based on the risk assessment outputs. 

Additionally, the objects that most influence the system’s decision-making process 

are visually presented to developers or users through attention heatmaps (focus maps). 

This enables transparent observation of which objects or environmental elements were 

taken into account and to what extent. 

With this structure, the XAI Interpreter functions not only as an environmental 

perception component but also as a core module that directly affects the explainability 

level of autonomous driving. 
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To ensure explainability in its operation, the XAI Interpreter employs two 

complementary mechanisms: Learned Attention Weights (LAW) and Object-Level 

Attention (OLA). Each of these methods is described in detail below. 

3.1. Learned Attention Weights (LAW) 

In deep learning models, not every pixel from camera images contributes equally 

during the prediction phase. Instead, the model selectively focuses on the most 

informative regions of the input, known as attention maps, which highlight the areas 

deemed most relevant for decision-making. This is useful for image classification and 

object detection. Thus, it makes the prediction made when looking at the model’s output 

more interpretable and explainable. In line with these explanations, the combination of 

Faster RCNN and Grad Cam applied to an image obtained from the vehicle’s camera looks 

like in Figure 3. 

 

Figure 3. Grad-Cam and Faster RCNN output image applied on camera image. 

Grad-CAM was used to extract attention maps. The Grad-CAM application 

generated attention maps by correlating them with the gradients of the activation maps in 

the last convolutional layer. In this study, the prediction performance and confidence 

scores of different architectures were compared. Faster R-CNN and Grad-CAM are 

integrated to obtain visual explanations of model predictions. Different versions of the 

model yield varying results depending on the scenario. 

In this study, we aim to compare these variants to identify the most suitable 

architecture for our specific task. ResNet-50 provided a good balance between 

interpretability and performance, achieving an average confidence score of 92.85% and a 

prediction success rate of 96.42%. The MobileNetV3 Large model produced less accurate 

and scattered attention maps, with an average prediction rate of 87.14% and an average 

confidence score of 69.47%. While the ResNet-101 model achieved the highest prediction 

performance with 98.31% accuracy and 99.74% confidence, the delay in inference time can 

be limiting in real-time applications. 

Considering all these results, the ResNet-50 model was determined to be the most 

suitable model for this study due to its performance in real-time scenarios and its high 

level of explainability. 

3.2. Object-Level Attention (OLA) 

The Object-Level Attention (OLA) module is designed as a submodule that 

determines how important the surrounding objects are to the driving behavior of the EGO 

vehicle. This submodule processes information about all vehicles in the same or adjacent 

lanes as the EGO vehicle as it moves along its trajectory and assigns each one a value 

between 0 and 1. A value of 1 indicates that the vehicle is highly important, whereas a 

value of 0 means it has very low importance. 
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The structure of the submodule is shown in Figure 4. Data coming from the world 

model is first acquired, then processed through data preprocessing and augmentation, 

and finally passed through the PlanT [1] model. The output is then published for the XAI 

Planner to use. 

 

Figure 4. OLA Framework. 

The attention values are calculated using a machine learning model called PlanT. This 

model, which is based on the Transformer architecture and trained via “Imitation 

Learning”, learns by mimicking the behavior of another expert model with the support of 

Supervised Learning. As input, it uses features such as the surrounding vehicles’ IDs, 

width, length, speed, heading, and distance to the EGO vehicle, along with the EGO 

vehicle’s trajectory points. The model then produces attention values between 0 and 1 for 

each surrounding vehicle (Figure 5). 

 

Figure 5. Framework of PlanT [1]. 

In the tests conducted in the CARLA simulation environment, the OLA submodule 

was evaluated under various autonomous driving scenarios (such as lane keeping, lane 

changing, and speed control). It was successfully operated using information from the 

world model, and the results were observed to be consistent with the expected attention 

values. In both lane-keeping and lane-changing scenarios, the submodule demonstrated 
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its ability to generate meaningful and usable attention values based on the EGO vehicle’s 

waypoints as well as the distance, heading, and speed of the vehicles in the current and 

upcoming lanes. 

In Figure 6 you can see the OLA values displayed on the surrounding vehicles during 

a lane-keeping scenario. During lane keeping, the OLA values for nearby vehicles in 

adjacent lanes are calculated to be high, while vehicles that are farther away from the EGO 

vehicle receive lower values compared to those nearby. In Figure 7, for an EGO vehicle 

performing both lane keeping and lane changing, the OLA submodule is able to correctly 

assess the complexity of the transition process and generate reliable attention values 

accordingly. 

 

Figure 6. OLA Application on Lane Keep Scenario. 

 

Figure 7. OLA Application on Lane Change Scenario. 

  



Eng. Proc. 2025, x, x FOR PEER REVIEW 8 of 9 
 

 

4. Conclusions and Future Work 

This study aimed to develop an XAI-supported decision-making infrastructure to 

address the requirements of safety, transparency, and user trust in autonomous vehicle 

systems. Within this scope, the proposed XAI-Interpreter module enhances the visibility 

and auditability of the system’s internal operations by making the decision-making 

processes more understandable. 

The developed solution is integrated into a V-model-based, multi-layered 

autonomous driving software architecture and has been modeled to work compatibly 

with both virtual and physical components. 

The XAI-Interpreter comprises two main components that provide explainability: 

LAW and OLA. Within the LAW approach, attention maps were generated using the 

Grad-CAM method integrated with Faster R-CNN. These maps visually illustrate which 

regions of the image the model focuses on during decision-making. The ResNet-50 

backbone demonstrated a balanced performance in terms of both attention map accuracy 

and inference speed, making it a suitable model for achieving interpretability alongside 

real-time operation. 

In the OLA approach, dynamic objects in the environment are analyzed based on 

features such as position, velocity, and orientation, and each object is assigned a 

normalized attention score between 0 and 1. These scores, produced using a PlanT-based 

model, revealed the influence of the environment on the decision-making process at the 

object level showing that closer or more hazardous objects are assigned higher scores. 

Simulation-based tests demonstrated that this system produces consistent results across 

various driving scenarios and meaningfully contributes to behavior generation processes. 

In conclusion, the architecture supported by the XAI-Interpreter module allows 

driving decisions to be monitored more transparently by both developers and users, 

enhances system reliability, and fosters more natural human-machine interaction. 

Future work will focus on evaluating this architecture in hardware-supported test 

environments and conducting field tests with real vehicles. Additionally, the integration 

of the XAI approach into other domains such as driver alert systems is planned. In this 

direction, the XAI-Interpreter is positioned as one of the foundational building blocks of 

next-generation explainable systems in autonomous driving technologies, addressing 

ethical, safety, and user experience dimensions. 
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