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Abstract

Autonomous vehicles need to explain their actions to improve reliability and build user
trust. This study focuses on enhancing the transparency and explainability of the decision-
making process in such systems. A module named XAl-Interpreter is developed to
identify and highlight the most influential factors in driving decisions. The module
combines two complementary methods: Learned Attention Weights (LAW) and Object-
Level Attention (OLA). In the LAW method, images captured from the ego vehicle’s front
and rear cameras in the CARLA simulation environment are processed using the Faster
R-CNN model for object detection. GRAD-CAM is then applied to generate visual
attention heatmaps, showing which regions and objects in the images affect the model’s
decisions. The OLA method analyzes nearby dynamic objects, such as other vehicles,
based on their size, speed, position, and orientation relative to the ego vehicle. Each object
receives a normalized attention score between 0 and 1, indicating its influence on the
vehicle’s behavior. These scores can be used in downstream modules such as planning,
control, and safety. The module is currently tested in simulation. Future work will involve
deploying the system on real vehicles. By helping the vehicle focus on the most critical
elements in its surroundings, the Explainable Artificial Intelligence (XAI)-Interpreter
supports more transparent and explainable autonomous driving systems.

Keywords: XAl-Interpreter; autonomous driving; visual attention; GRAD-CAM,; object-
level reasoning

1. Introduction

Autonomous vehicles play a key role in reshaping modern transportation systems in
terms of safety, efficiency, and user experience. However, for these systems to be adopted,
it is not enough for them to make correct decisions; they must also present these decisions
in an explainable manner to the user. Transparency and clarity in decision-making
processes are critical for building trust and ensuring the auditability of system behavior.

At this point, XAl methods offer solutions to increase user trust by making the
internal workings of autonomous driving systems visible. Techniques such as visual
attention maps, object-based importance scoring, and attention weight interpretation are
frequently used to demonstrate which inputs influenced the system’s decisions and how.
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In the literature, various methods have been proposed to enhance the explainability
of autonomous driving systems. Studies that utilize compact object-level representations
instead of pixel-based visualizations have gained prominence. For example, the PlanT
model proposed by Renz et al. enables faster and more efficient decision inference in the
CARLA simulation environment compared to pixel-based approaches [1]. Chen and
Krahenbiihl introduced the “Learning from All Vehicles” approach, which improves
driving performance by aggregating knowledge from different vehicles [2]. Nazat et al.
presented the Multimodal-XAD model, which enhances explainability by combining
bird’s-eye view (BEV) representations with natural language explanations [3].

Furthermore, the XAI-ADS framework by Selvarajan et al. enables explainable
anomaly detection based on time-series data [4], while Yuan et al. proposed the RAG-
Driver model, which uses large language models to provide natural language
explanations for driving actions [5]. Gao et al.’s VectorNet model improves explainability
by offering graph-based driving predictions with object-level representations [6], and
Kolekar and colleagues employed Grad-CAM after scene segmentation to produce visual
explanations [7]. The work of Kim and Canny contributes to textual explanation of driving
decisions and visualization of attention mechanisms [8,9]. Additionally, the systematic
SafeX framework by Kuznietsov et al. helps classify existing XAI methods [10].

In this study, we present a module called the XAl-Interpreter, which integrates
explainability as a core component of the system. This module utilizes two
complementary methods to identify and visualize the factors influencing autonomous
vehicle decision-making: LAW and OLA. In the LAW method, Grad-CAM is applied to
objects detected via Faster R-CNN to generate attention maps, identifying the image
regions that affect decisions [11,12]. The OLA method evaluates dynamic objects in the
environment based on features such as velocity, position, and orientation. It then
calculates a normalized attention score for each object, using these scores to inform the
planning, control, and safety subsystems.

The following sections of the paper detail the explainability-oriented V-model
architecture and describe the implementation and outcomes of the XAl-Interpreter module.

2. V-Model-Based Autonomous Driving Software Architecture

A V-model-based autonomous driving software architecture, which incorporates an
explainable Al layer, is presented in Figure 1 [13]. This structure consists of five main
layers, each designed hierarchically to include a perception and an actuator module. The
Human-Machine Interface (HMI) and Monitoring Module, located at the lowest level, not
only enables user interaction but also ensures that the system operates with minimal error.
While the information flow between layers is defined sequentially, the HMI and
Monitoring Module is uniquely designed to communicate directly with modules across
all layers.

Based on the three main functional groups defined in the SAE J3016 standard by the
Society of Automotive Engineers (SAE), the layers in the architecture can be classified as
follows:

e  Operational: Sensors— Actuators, Sensor Interface — Actuator Control Layers

e  Tactical: Perception—Low-Level Controller, World Model —High-Level Controller
Layers

e  Strategic: Explainable AI (XAI) Interpreter —XAI Planner Layer

While the modules in the operational layer require high sampling rates, this
requirement decreases for the tactical and strategic layers. In terms of computational load,
the operational layer consumes fewer resources, whereas the strategic layer involves
higher complexity and processing demand.
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Figure 1. Autonomous Driving Software Architecture.

As a result, this architectural design enhances both the explainability of autonomous
decision-making processes and the system-level utilization of the advantages provided by
connected environments. This integration especially improves driving safety in complex
traffic conditions and enables effective cooperative operation between connected and non-
connected vehicles (CV and NCV).

Simulation-Based Autonomous Driving Architecture

The diagram presented in Figure 2 demonstrates how the developed software
architecture is integrated in a unified manner. This simulation-based structure allows
cooperative interactions between connected and non-connected vehicles to be modeled
both in virtual environments and in parallel with physical hardware. The integrated
architecture includes several core modules, which are detailed below:

e Carla Sensors: Provides virtual sensor data that detects objects around the vehicle
within the simulation environment.

e  V2X Communication Layer: Merges V2X data (e.g., position, speed, turn signals)
from other vehicles in the simulation with Carla sensor data to improve situational
awareness.

e  Vehicle Dynamics Model: Represents the physical motion of the vehicle, executing
commands from perception and planning modules to steer the vehicle.

e Carla Environment: Refers to the virtual environment where the simulation takes
place, including road infrastructure and traffic elements.

e  Traffic Generator: Dynamically creates CVs, NCVs, and other vehicles in the
environment to test different traffic scenarios.

e  XAI Interpreter: Interprets environmental conditions using perception and V2X
data. It generates semantic information about traffic signs, surrounding vehicles, and
environmental factors.

e  XAI Planner: Makes strategic decisions based on the output of the interpreter, such
as yielding to NCVs at intersections, lane changing, or speed adaptation.

e  Motion Planning and Control: Converts strategic decisions from the XAI Planner
into trajectory and velocity profiles, and forwards the result to the vehicle control
module.

¢  Human-Machine Interface (HMI): Represents interaction with the human driver in
simulation scenarios by providing signals, information, and alerts.
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Figure 2. Autonomous Driving Architecture in Simulation Environment.

This architecture is integrated with the Carla simulation environment, ROS-based
communication infrastructure, and real-time modules running on the Ubuntu operating
system. Although simulated data is used instead of real-world sensor data, the V2X
components of the architecture are developed to be fully compatible with physical
hardware.

Following this architectural overview, the next section discusses the detailed
structure of the XAI Interpreter module, one of the core components responsible for
ensuring the system’s explainability.

3. XAl-Interpreter Module

The XAI Interpreter is responsible for generating a semantic understanding of the
environment by processing characteristic information such as traffic flow, inter-object
relationships, and traffic signs located within the world modeling layer of the autonomous
system. This module interprets environmental information by abstractly analyzing traffic
rules, road topology, and dynamic environmental conditions.

In the interpretation process, not only real-time observations but also historical traffic
patterns are considered to predict future scenarios. By doing so, the potential movement
direction and position of every object in the dynamic environment can be estimated,
allowing the system to foresee possible collisions or dangerous situations in advance.
Using this information, the system can issue early warnings to the driver or decision-
making modules, thereby enhancing safety and contributing to more optimal driving
decisions.

The XAI Interpreter generates these predictions using probabilistic models and
directly transmits the results to the Planning module. The planning process, in turn, can
produce more informed and safer routes based on the risk assessment outputs.

Additionally, the objects that most influence the system’s decision-making process
are visually presented to developers or users through attention heatmaps (focus maps).
This enables transparent observation of which objects or environmental elements were
taken into account and to what extent.

With this structure, the XAI Interpreter functions not only as an environmental
perception component but also as a core module that directly affects the explainability
level of autonomous driving.
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To ensure explainability in its operation, the XAI Interpreter employs two
complementary mechanisms: Learned Attention Weights (LAW) and Object-Level
Attention (OLA). Each of these methods is described in detail below.

3.1. Learned Attention Weights (LAW)

In deep learning models, not every pixel from camera images contributes equally
during the prediction phase. Instead, the model selectively focuses on the most
informative regions of the input, known as attention maps, which highlight the areas
deemed most relevant for decision-making. This is useful for image classification and
object detection. Thus, it makes the prediction made when looking at the model’s output
more interpretable and explainable. In line with these explanations, the combination of
Faster RCNN and Grad Cam applied to an image obtained from the vehicle’s camera looks

like in Figure 3.

Figure 3. Grad-Cam and Faster RCNN output image applied on camera image.

Grad-CAM was used to extract attention maps. The Grad-CAM application
generated attention maps by correlating them with the gradients of the activation maps in
the last convolutional layer. In this study, the prediction performance and confidence
scores of different architectures were compared. Faster R-CNN and Grad-CAM are
integrated to obtain visual explanations of model predictions. Different versions of the
model yield varying results depending on the scenario.

In this study, we aim to compare these variants to identify the most suitable
architecture for our specific task. ResNet-50 provided a good balance between
interpretability and performance, achieving an average confidence score of 92.85% and a
prediction success rate of 96.42%. The MobileNetV3 Large model produced less accurate
and scattered attention maps, with an average prediction rate of 87.14% and an average
confidence score of 69.47%. While the ResNet-101 model achieved the highest prediction
performance with 98.31% accuracy and 99.74% confidence, the delay in inference time can
be limiting in real-time applications.

Considering all these results, the ResNet-50 model was determined to be the most
suitable model for this study due to its performance in real-time scenarios and its high
level of explainability.

3.2. Object-Level Attention (OLA)

The Object-Level Attention (OLA) module is designed as a submodule that
determines how important the surrounding objects are to the driving behavior of the EGO
vehicle. This submodule processes information about all vehicles in the same or adjacent
lanes as the EGO vehicle as it moves along its trajectory and assigns each one a value
between 0 and 1. A value of 1 indicates that the vehicle is highly important, whereas a
value of 0 means it has very low importance.
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The structure of the submodule is shown in Figure 4. Data coming from the world
model is first acquired, then processed through data preprocessing and augmentation,
and finally passed through the PlanT [1] model. The output is then published for the XAI
Planner to use.
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Figure 4. OLA Framework.

The attention values are calculated using a machine learning model called PlanT. This
model, which is based on the Transformer architecture and trained via “Imitation
Learning”, learns by mimicking the behavior of another expert model with the support of
Supervised Learning. As input, it uses features such as the surrounding vehicles’ IDs,
width, length, speed, heading, and distance to the EGO vehicle, along with the EGO
vehicle’s trajectory points. The model then produces attention values between 0 and 1 for
each surrounding vehicle (Figure 5).
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Figure 5. Framework of PlanT [1].

In the tests conducted in the CARLA simulation environment, the OLA submodule
was evaluated under various autonomous driving scenarios (such as lane keeping, lane
changing, and speed control). It was successfully operated using information from the
world model, and the results were observed to be consistent with the expected attention
values. In both lane-keeping and lane-changing scenarios, the submodule demonstrated
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its ability to generate meaningful and usable attention values based on the EGO vehicle’s
waypoints as well as the distance, heading, and speed of the vehicles in the current and
upcoming lanes.

In Figure 6 you can see the OLA values displayed on the surrounding vehicles during
a lane-keeping scenario. During lane keeping, the OLA values for nearby vehicles in
adjacent lanes are calculated to be high, while vehicles that are farther away from the EGO
vehicle receive lower values compared to those nearby. In Figure 7, for an EGO vehicle
performing both lane keeping and lane changing, the OLA submodule is able to correctly
assess the complexity of the transition process and generate reliable attention values

accordingly.

L £

Figure 7. OLA Application on Lane Change Scenario.
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4. Conclusions and Future Work

This study aimed to develop an XAl-supported decision-making infrastructure to
address the requirements of safety, transparency, and user trust in autonomous vehicle
systems. Within this scope, the proposed XAl-Interpreter module enhances the visibility
and auditability of the system’s internal operations by making the decision-making
processes more understandable.

The developed solution is integrated into a V-model-based, multi-layered
autonomous driving software architecture and has been modeled to work compatibly
with both virtual and physical components.

The XAl-Interpreter comprises two main components that provide explainability:
LAW and OLA. Within the LAW approach, attention maps were generated using the
Grad-CAM method integrated with Faster R-CNN. These maps visually illustrate which
regions of the image the model focuses on during decision-making. The ResNet-50
backbone demonstrated a balanced performance in terms of both attention map accuracy
and inference speed, making it a suitable model for achieving interpretability alongside
real-time operation.

In the OLA approach, dynamic objects in the environment are analyzed based on
features such as position, velocity, and orientation, and each object is assigned a
normalized attention score between 0 and 1. These scores, produced using a PlanT-based
model, revealed the influence of the environment on the decision-making process at the
object level showing that closer or more hazardous objects are assigned higher scores.
Simulation-based tests demonstrated that this system produces consistent results across
various driving scenarios and meaningfully contributes to behavior generation processes.

In conclusion, the architecture supported by the XAl-Interpreter module allows
driving decisions to be monitored more transparently by both developers and users,
enhances system reliability, and fosters more natural human-machine interaction.

Future work will focus on evaluating this architecture in hardware-supported test
environments and conducting field tests with real vehicles. Additionally, the integration
of the XAI approach into other domains such as driver alert systems is planned. In this
direction, the XAl-Interpreter is positioned as one of the foundational building blocks of
next-generation explainable systems in autonomous driving technologies, addressing
ethical, safety, and user experience dimensions.
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