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Abstract 

Precision agriculture is dependent on precise crop identification to maximize resource uti-

lization and enhance yield forecasting. This paper investigates the use of Vision Trans-

formers (ViTs) for crop classification from high-resolution satellite images. In contrast to 

traditional deep learning models, ViTs use self-attention mechanisms to capture intricate 

spatial relationships and improve feature representation. The envisioned framework com-

bines preprocessed multispectral satellite imagery with a Vision Transformer model that 

is optimized to classify heterogeneous crop types more accurately. Experimental out-

comes confirm that ViTs are superior to conventional Convolutional Neural Networks 

(CNNs) in processing big agricultural datasets, yielding better classification accuracy. The 

proposed model was tested on a multispectral satellite image from Sentinel-2 and Land-

sat-8. The results shows that ViTs efficiently captured long-range dependencies and intri-

cate spatial patterns and attained a high classification accuracy of 94.6% and a Cohen’s 

kappa coefficient of 0.91. The incorporation of multispectral characteristics like NDVI and 

EVI also improved model performance, allowing for improved discrimination between 

crops with comparable spectral signatures. The results point out the applicability of Vision 

Transformers in remote sensing for sustainable and data-centric precision agriculture. 

Even with the improvements made in this study, issues like high computational expense, 

data annotation needs, and environmental fluctuations are still major hurdles to wide-

spread deployment. 
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1. Introduction 

Precision agriculture has emerged as a transformative approach in modern farming, 

leveraging advanced technologies to optimize resource utilization, enhance crop yield, 

and ensure sustainable agricultural practices [1]. A fundamental aspect of precision agri-

culture is accurate crop identification, which aids in monitoring crop health, predicting 

yields, and implementing data-driven decision-making processes. Conventional crop 

classification approaches are based on field surveys by hand or traditional machine learn-

ing algorithms, which tend to lack scalability and accuracy [2]. The combination of satel-

lite imaging with sophisticated deep learning methods holds the key to effective and high-
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accuracy crop identification [3]. Figure 1 shows the important keywords used in remote 

sensing. 

 

Figure 1. Some Important Keywords used in Remote Sensing. 

New developments in computer vision, specifically deep learning architectures, have 

dramatically enhanced the pre-cision of agricultural remote sensing applications [4]. Con-

volutional Neural Networks (CNNs) have already been applied extensively to crop clas-

sification, but their limited receptive field and susceptibility to long-range dependencies 

limit their performance in heavy-tailed agricultural scenes [5]. To address these issues, 

Vision Transformers (ViTs) have proven to be a strong contender, with enhanced spatial 

feature ex- traction and better representation learning capabilities. Vision Transformers 

utilize self-attention to process global relations between image elements and achieve top 

performance in satellite image analysis [6]. The capabilities of ViTs exceed local areas of 

attention because they excel at learning complicated spatial structures needed for crop 

type discrimination. The ability to process large agricultural data sets while gaining con-

textual knowledge improves crop classification precision which leads to more dependable 

precision agriculture solutions [7]. Satellite imagery analyzed with ViTs produces supe-

rior outcomes than regular procedures because of multiple advantages. Big agricultural 

areas can portray their expansive crop status through real-time satellite imaging which 

delivers broad viewing capabilities [8]. This paper demonstrates how the combination of 

multispectral and hyperspectral data enables the method to extract vital vegetation indi-

ces and spectral signatures which identify different crop species. Real-time Use of these 

numerous data sources with ViTs produces better crop classification systems that demon-

strate enhanced stability. This paper presents a framework built on Vision Transformers 

which performs satellite image-based crop classification [2]. The high-resolution agricul-

tural datasets need multiple spectral bands because this training enables better classifica-

tion accuracy. The performance evaluation of ViTs and CNN-based architectures happens 

through extensive testing experiments designed to examine their effectiveness in real 
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farming situations. The proposed system aids the progress of intelligent agricultural tech-

niques through its delivery of accurate crop area identification capabilities to farmers and 

policy makers [9]. Although Vision Transformers (ViTs) have been extensively applied in 

remote sensing, including multispectral and hyperspectral imagery, most studies focus 

on generic land-use or limited crop types. This work introduces a novel ViT-based frame-

work specifically designed for crop recognition in precision agriculture. By integrating 

multispectral features with vegetation indices (NDVI, EVI), the model enhances discrim-

ination among spectrally similar crops and achieves higher accuracy than CNN-based ap-

proaches. The validation on real agricultural datasets highlights its robustness and contri-

bution to sustainable crop monitoring. 

2. Literature Review 

Remote sensing and machine learning in crop classification are points of big research, 

however, a few problems will still exist. Bargiel [11] described an approach that used ra-

dar time-series and crop phenology together, but the single use of SAR data rendered the 

method less universally applicable compared to those surveyed in this article. Panigrahi 

et al. [12] compared several supervised ML regression models (M5 model tree and gradi-

ent-enhanced tree) through crop yield prediction which achieved good performance but 

showed that they could not easily handle the high-dimensional multispectral data. Mo-

hanty et al. [13] have compared the ML approaches to the remote sensing yield prediction; 

however, their traditional ML models were not able to reflect the nonlinearity in large-

scale data. 

DNN have been known to be beneficial in predicting crops. Artificial neural networks 

were used by Shankar et al. [14] to estimate the effect of nutrients on the growth of rice, 

since they obtained better results than linear models, but often required a lot of tuning 

and labeled data. You et al. [15] introduced deep Gaussian processes to the crop yield 

prediction utilizing satellite imagery where it showed an improvement in prediction with 

reduced interpretability and scalability. More recently, deep learning has been used to 

count plants in aerial imagery [16]. Unlike multi-class crop recognition, this application is 

shown to be robust to plant occlusion. 

There has also been adoption of vision-based deep learning including architectures. 

Kussul et al. [17] applied satellite images and deep neural nets to crop classification in 

Ukraine, providing another example of applying the power of big data but dealing with 

complexities of computation. Ji et al. [18] combined multi-temporal Sentinel-2 with recur-

rent neural networks (RNNs) to map crops, performing better than random forests and 

unable to generalise across seasons. Other Sentinel-2 use-cases Temporal convolutional 

networks were used by Russwurm and Kormer [19] to classify crop types and achieved 

improvements in capturing seasonal dynamics, but also needed dense time-series data. 

In spite of these developments, there are still major gaps. Available solutions tend to 

use one type of data (SAR, optical, or UAV) and fail to perceive spectrally similar crops. 

Most ML/DL techniques need access to large and labeled data and struggle with scaling 

to heterogenous farming areas. In this respect, ViTs provide a significant development 

opportunity to improve long-range dependencies and sophisticated spatial patterns using 

self-attention. In contrast to CNN- or RNN-based methods, we combine ViT and multi-

spectral data and vegetation indices (NDVI, EVI) the results of which appear to be more 

separable among spectrally mutually overlapping crops and better in accuracy on real-

world agricultural data. 

Table 1 shows the summary of the literature. 
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Table 1. Summary of references with key findings and research gaps. 

Ref No. 
Author(s) & 

Year 
Title Findings Research Gaps 

[11] D. Bargiel, 2017 

A new method for crop classifi-

cation combining time series of 

radar images and crop phenol-

ogy information 

Demonstrated crop classifica-

tion using radar time series 

with phenological infor-

mation 

Limited transferability; de-

pends heavily on SAR data 

only 

[12] 
B. Panigrahi et 

al., 2022 

A machine learning-based com-

parative approach to predict the 

crop yield using supervised 

learning with regression models 

Compared ML regression 

models for yield prediction 

with promising results 

Models struggled with high-

dimensional multispectral 

data 

[13] 
R. K. Mohanty 

et al., 2022 

Comparative analysis of ma-

chine learning techniques for 

crop yield prediction using re-

mote sensing data 

ML models effective for yield 

estimation with remote sens-

ing inputs 

Traditional ML approaches 

failed to capture nonlinear 

relationships 

[14] 
T. Shankar et 

al., 2022 

Prediction of the effect of nutri-

ents on plant parameters of rice 

by artificial neural network 

ANN outperformed linear 

models for rice growth pre-

diction 

Required extensive tuning 

and labeled data 

[15] 
J. You et al., 

2017 

Deep Gaussian process for crop 

yield prediction based on re-

mote sensing data 

Improved crop yield predic-

tion using deep Gaussian 

processes 

Limited interpretability and 

scalability in classification 

tasks 

[16] 

M. Rahnemoon-

far and C. Shep-

pard, 2017 

Deep count: Fruit counting 

based on deep simulated learn-

ing 

Showed robustness of deep 

learning for plant/fruit detec-

tion even under occlusion 

Did not extend to multi-

class crop recognition 

[17] 
N. Kussul et al., 

2017 

Deep learning classification of 

land cover and crop types using 

remote sensing data 

Demonstrated effectiveness 

of deep neural networks for 

crop classification in Ukraine 

Faced issues of computa-

tional complexity and scala-

bility 

[18] S. Ji et al., 2018 

3D convolutional neural net-

works for crop classification 

with multi-temporal remote 

sensing images 

RNN/3D CNN models im-

proved classification from 

multi-temporal data 

Poor generalization across 

different seasons/regions 

[19] 

M. Russwurm 

and M. Körner, 

2019 

Temporal convolutional neural 

networks for the classification of 

satellite image time series 

Achieved higher accuracy by 

capturing seasonal dynamics 

in Sentinel-2 data 

Required dense time-series 

data; limited in sparse ob-

servations 

3. Methodology 

Crop classification research operates through the use of Vision Transformer (ViT) 

methods with high-resolution satellite imagery. The complete methodology consists of 

four sequential phases including data gathering, data transformation, model structure de-

velopment and performance outcome measurement. A classification of various crops re-

lies heavily on multispectral information which is obtained from publicly available satel-

lite data platforms including Sentinel-2 and Landsat-8 for Ludhiana District of Punjab, 

India. Multiple agricultural areas with diverse crop placement throughout the dataset are 

prepared to develop a comprehensive and strong classification model. 

3.1. Data Preprocessing and Feature Extraction 

Table 2 shows the dataset characteristics, preprocessing steps, and experimental 

setup, including data sources, crop types, patch generation, train-validation-test split, and 

the main hyperparameters used for Vision Transformer and CNN models. 

For improved model performance, raw satellite images are preprocessed through a 

series of operations. Atmospheric correction is first applied to eliminate noise and enhance 
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spectral consistency. Images are then resampled to have a uniform spatial resolution, and 

vegetation indices like the Normalized Difference Vegetation Index (NDVI) and En-

hanced Vegetation Index (EVI) are extracted to give extra spectral features pertinent to 

crop differentiation. A data augmentation pipeline involving random cropping, rotation, 

and spectral jittering is used to enhance the robustness of the model and avoid overfitting. 

Table 2. Dataset details, preprocessing steps, and hyperparameter settings for crop recognition. 

Aspect Details 

Study Area Ludhiana District, Punjab, India 

Time Period 2021–2023 cropping seasons (Kharif & Rabi) 

Crops  Wheat, Rice, Maize, Soybean, Barley 

Satellite Data Sentinel-2 (72 scenes), Landsat-8 (36 scenes) → 108 total scenes 

Spatial Resolution Sentinel-2: 10–20 m; Landsat-8: 30 m 

Data Type Multispectral bands + vegetation indices (NDVI, EVI) 

Preprocessing Atmospheric correction, resampling, NDVI/EVI computation, augmentation 

Patch Size 16 × 16 pixels 

Total Labeled Patches 25,000 patches 

Data Split Training: 70% (17,500); Validation: 15% (3750); Testing: 15% (3750) 

CNN Baseline ResNet-50, 224 × 224 input, Cross-entropy loss 

Vision Transformer Patch size: 16 × 16, Embedding dim: 768, Layers: 12, Heads: 12 

Optimizer AdamW 

Learning Rate 0.0001 

Batch Size 32 

Epochs 100 

Evaluation Metrics Accuracy, Precision, Recall, F1-score, Cohen’s Kappa 

3.2. Model Architecture and Training 

The Vision Transformer model is trained for crop classification using self-attention 

mechanisms to encode long- range dependencies in satellite images. Unlike CNNs that 

use local feature extraction using convolutional filters, ViTs break input images into 

patches of a fixed size and map them to embeddings prior to being processed in a series 

of transformer layers. Training is carried out with a hybrid loss function of cross-entropy 

loss alongside a spectral consistency regularizer in order to enhance discrimination be-

tween highly similar crop types. Training is performed with an adaptive learning rate 

environment for high-performance computing to maximize convergence. The Figure 2 

shows the proposed methodology. 

 

Figure 2. Proposed Methodology. 
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3.3. Performance Measurement and Analysis 

Performance of the model is measured by major indicators including accuracy, pre-

cision, recall, F1-score, and the kappa coefficient. Comparative study against traditional 

CNN structures shows that ViTs excel at recognizing complex spatial patterns and en-

hancing classification performance. The experimental findings show that the Vision 

Transformer model performs better in classification performance over various crop types, 

especially in cases of overlapping spectral signatures. The application of multispectral and 

hyperspectral data also improves the model’s generalization capability over different en-

vironmental conditions. The results show that ViTs, with satellite imagery, offer a scalable 

and feasible solution for precision agriculture, allowing real-time and data-driven deci-

sion-making for farmers and policymakers. 

4. Results and Evaluation 

The Vision Transformer (ViT) model proposed for crop classification was tested on a 

dataset of multispectral satellite images from Sentinel-2 and Landsat-8 for the Ludhiana 

District of Punjab, India. The model produced a total classification accuracy of 94.6%, 

which was higher than the conventional CNN-based models, which had an accuracy of 

89.2%. The ViT model performed better in terms of precision and recall for different crops, 

especially in separating crops with close spectral signatures, like wheat and barley. The 

F1-score for crop main categories like rice, maize, and soybean was all greater than 0.92, 

which pointed toward high dependence of classification. The Table 3 shows the Analysis 

of the algorithms in different metrics. Multiple indices such as NDVI and EVI enhance the 

accuracy of classification yet extra preprocessing methods become necessary to address 

topographic and soil moisture variations creating noise. Improving ViT-based crop iden-

tification within real agricultural settings requires resolving currently existing problems. 

Table 3. Performance evaluation of Vision Transformer vs. CNN-based Model. 

Evaluation Metric Vision Transformer (ViT) CNN-Based Model 

Overall Accuracy  0.94 0.89 

Precision 0.95 0.88 

Recall 0.94 0.87 

F1-Score 0.92 0.86 

Cohen’s Kappa Score 0.91 0.85 

Misclassification Rate (%) 5.4 10.8 

Inference Time (sec/image) 0.75 1.10 

Impact of NDVI & EVI on Accuracy (%) +4.2 +2.1 

Error Rate in Overlapping Crops (%) 7.1 11.3 

Figures 3 and 4 shows the graphical value of the analysis. In order to determine 

model efficiency, we also calculated the Cohen’s kappa statistic with a coefficient of 0.91 

that shows high consistency of predicted against true classifications. Confusion matrix 

analysis indicated that rates of misclassification were considerably reduced for ViT than 

for CNN, with a 35% reduction in error rate in the case of overlapping spectral features 

among crops. Also, inference time was evaluated where the ViT model processed images 

from satellites at 0.75 s per image, so it was favorable for real-time usage. Ablation exper-

iments were performed in order to understand the effect of various feature inputs. The 

addition of vegetation indices like NDVI and EVI increased accuracy by 4.2%, whereas 

incorporating RGB bands only caused a 6.5% drop in classification performance. The re-

sults demonstrate that combining multispectral data and ViTs maximizes crop classifica-

tion accuracy, proving to be an excellent method for precision agriculture. The results 
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endorse the efficiency of Vision Transformers for large-scale agro-monitoring, offering 

good insights for sustainable farming and decision-making. 

 

Figure 3. Accuracy Comparison: Vision Transformer vs. CNN-Based Model. 

 

Figure 4. Eroor and Vegetation Index Impact: Vision Transformer vs. CNN-Based Model. 

5. Challenges and Limitations 

Supplementary to ViT’s high accuracy for crop classification exists some obstacles in 

adopting the model. The main drawback arises from the requirement of extensive labeled 

satellite training datasets of high quality at large scale. Generating and marking such da-

tasets demands considerable resources and time commitment particularly when dealing 

with intricate web of cropping patterns. Implementation of Vision Transformers requires 

exceptional GPU capabilities because they produce higher computational complexity 

compared to basic CNN frameworks. The use of these models becomes limited on edge 

computing devices because of resource constraints which makes real-time precision agri-

culture applications challenging. Classification accuracy of ViTs diminishes when ex-

posed to altering environmental conditions consisting of cloud cover and seasonal 

changes alongside varying lighting conditions. alborg’s model performs effectively with 

multispectral data but it misses identifying certain crop species because of their similar 
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spectral profiles and additional spectral indices or temporal data processing will improve 

classification results. 

6. Future Outcomes 

The combination of Vision Transformers (ViTs) with cutting-edge remote sensing 

technologies has tremendous potential to transform precision agriculture. Future work 

may concentrate on improving model efficiency by integrating lightweight transformer 

models, like Swin Transformers or MobileViTs, to lower computational expenses and fa-

cilitate deployment on edge devices such as drones and IoT-enabled sensors. In addition, 

combining temporal satellite observations with ViTs would enhance monitoring of crop 

growth by examining seasonality, enabling more precise predictions of yields and earlier 

identification of crop stress. These improvements would facilitate real-time decision-mak-

ing by farmers, streamlining resource use and enhancing general agricultural sustainabil-

ity. Another direction of interest is the integration of multimodal data sources, including 

weather patterns, soil health indicators, and UAV imagery, to further improve crop clas-

sification models. Using self-supervised learning methods, the dependency on large la-

beled datasets might be reduced, such that the model will be more flexible in handling 

varied agricultural landscapes. In addition, an AI-powered precision farming dashboard 

merging ViT predictions with GIS maps may offer actionable information to farmers and 

policymakers alike for effective crop management. All these future innovations will lead 

towards a smarter, data-driven agri-ecosystem promoting food security as well as sus-

tainable agriculture. 

7. Conclusions 

In this work, this examined the use of Vision Transformers (ViTs) for crop recognition 

from high-resolution satellite images and proved their advantage over conventional 

CNN- based models in precision agriculture. Through the utilization of self-attention 

mechanisms, ViTs efficiently captured long-range dependencies and intricate spatial pat-

terns and attained a high classification accuracy of 94.6% and a Cohen’s kappa coefficient 

of 0.91. The incorporation of multispectral characteristics like NDVI and EVI also im-

proved model performance, allowing for improved discrimination between crops with 

comparable spectral signatures. Even with these improvements, issues like high compu-

tational expense, data annotation needs, and environmental fluctuations are still major 

hurdles to widespread deployment. But subsequent research can emphasize the optimi-

zation of lightweight transformer models, the use of temporal and multimodal data, and 

the incorporation of self-supervised learning methods to improve the efficiency and scala-

bility of ViTs for practical agricultural applications. The results of this research highlight 

the promise of deep learning-powered satellite-based crop classification in facilitating 

data-driven decision-making for farmers, policymakers, and researchers to promote more 

sustainable and smart farming practices. 
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