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Abstract: The detection of fetal brain abnormalities at an early stage has a significant 

impact with prenatal health care. The brain abnormalities arise a major concern for the 

lifelong problem in newborns. Early detection of fetal brain abnormalities helps clinicians 

to give extra care during pregnancy. They can plan the future treatment based on it. They 

can go for several tests, like fetal MRI to prepare for the appropriate treatment after birth. 

If these can be detected early and cure the impact these abnormalities can bring when they 

are grown-up. These abnormalities include cerebral palsy, developmental delays, and 

cognitive impairments. The existing methods for the detection of the fetal abnormalities 

at an early stage have less accuracy and are time consuming complex processes. Here we 

propose, a feasible multisensory framework-based system that helps to detect preliminary 

fetal brain abnormalities. The system involves sensors like Doppler Ultrasound, Fetal 

Electroencephalography (fEEG), Near-Infrared Spectroscopy (NIRS) and other imaging 

systems combined together with the multimodal approach to provide an insight on the 

brain growth and status. The Doppler Ultrasound sensor is used to identify fetal heart rate 

patterns, NIRS is used to measures oxygen levels in the brain, helping to detect low 

oxygen conditions that may harm brain development. fEEG is used to monitor brain 

activity non-invasively by capturing magnetic signals from the fetal brain by giving high-

resolution insights on the neurological function. Other ultrasound imaging techniques are 

used to detect the physical abnormalities like ventriculomegaly, corpus callosum 

agenesis, and hydrocephalus. This proposed system uses AI models that work as an 

ensembled method which comprises of Convolutional Neural Network (CNN) and Long 

Short-Term Memory network (LSTM) for identifying the structural brain abnormalities. 

The system has been validated against sourced sample data sets and proved to provide a 

comparatively higher accuracy and better performance. 
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1. Introduction 

The importance of women bearing children has been recognized since ancient times. 

Motherhood brings significant changes in a woman’s life. During pregnancy, both the 

mother and the developing fetus require continuous care. Pregnancy is divided into three 

trimesters. The first trimester spans from 0 to 13 gestational weeks (GW). The second 

trimester covers 14 to 27 GW, and the third runs from 28 to 42 GW. A baby is usually born 
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between 38 and 42 weeks of gestation. The early phase of brain development is critical for 

the child’s overall health and cognitive functions. If fetal brain abnormalities are not 

detected early, they can lead to serious neurological disorders such as cerebral palsy, 

developmental delays, and motor dysfunctions. In modern medicine, there is a growing 

emphasis on early diagnosis. This has encouraged the integration of sensor-based 

technologies into prenatal care. These technologies are non-invasive and provide essential 

data on both functional and structural aspects of the fetal brain. 

The use of Internet of Things (IoT) solutions in healthcare is expanding rapidly. IoT 

offers numerous benefits but also faces challenges. These include maintaining 

communication quality, ensuring data security, managing efficient storage and retrieval, 

and applying artificial intelligence (AI) for clinical decision support [1–7]. IoT-enabled 

monitoring devices, often connected to one or more sensors, are increasingly used for 

long-term health tracking. They also help address the shortage of medical specialists. 

Despite these advancements, there are still issues to overcome—such as performance 

optimization, secure communication, and reliable data storage [8–11]. The adoption of 

clinical data systems has expanded the volume of electronic health records. This growth 

has reduced costs and improved efficiency in healthcare. However, long-term, multi-

sensor monitoring produces large datasets that must be analyzed and stored according to 

clinical, security, and regulatory requirements. Big data techniques are essential for 

managing and analyzing this information [6–13]. Sensor technologies have changed how 

fetal well-being is assessed. Continuous tracking of physiological signals helps clinicians 

to identify the changes in brain development. These can be detected before any visible 

abnormalities identified. Early detection helps us to timely intervention. It also enhances 

the overall outcomes. Advancement in data processing and machine learning have 

enhanced sensor data rendition. They allow more precise and predictive analysis. Sensor 

based systems are very essential which provides accurate and real time outcome with the 

help of parental monitoring. If we compare it with traditional diagnostic method, we 

always get the better outcome. This research focuses on comprehensive, multi-sensor 

framework which helps to detect the fetal brain abnormalities in early stage. The research 

will combine multiple sensing technologies with intelligent data analysis. It helps ensure 

safer pregnancies. It also helps in clinical decisions. 

2. Proposed Framework 

The directed framework is both structured and integrated. The aim of this framework 

is detection of fetal brain abnormalities in early stage. For this, it combines senso r-based 

data collection with AI-driven analysis. The process begins with the use of various non-

invasive sensors. These include Ultrasound, Tocodynamometer, Near-Infrared 

Spectroscopy (NIRS), Electroencephalography (EEG), Accelerometers, and advanced 

3D/4D ultrasound imaging [1–3]. 

Each of these devices contributes unique physiological, structural, or neurological 

information. Once collected, the raw data undergoes preprocessing. This stage involves 

removing noise and applying normalization techniques. Preprocessing ensures that the 

input signals are standardized, consistent, and reliable for further analysis [4]. The next 

stage is targeted feature extraction. At this point, the system isolates important clinical 

indicators. Examples include oxygenation patterns, neural activity signals, and detailed 

structural features of the fetal brain [5]. These features are compared against established 

medical thresholds in real time. Any deviation is flagged as a potential early indication of 

neurological risk [6]. After applying multimodal data fusion, it combines reading from all 

sensors into one complete view of fetal brain health [7]. For analysis, the framework uses 

advanced deep learning architectures. Which contain Rule-Based Screening (threshold-

driven alerts), LSTM + 1D CNN + 3D CNN fusion architecture, SHAP and Grad-CAM 
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[8,9]. These models allow the system to process both temporal signals and volumetric 

images. Which leads to the accuracy of abnormality detection. This offers clear, 

interpretable insights for clinicians. Based on the risk indicators, clinicians can decide 

whether to proceed with further diagnostics, such as fetal MRI or fMRI [10]. 

 

Figure 1. Architectural digram for proposed Framework. 

2.1. Dataset Collection 

The dataset used in this study has been genrated under the guidance of the expertise 

in the respective field with the proper knowledge (Dr Swati M.Landge Gynecologist And 

Obstetrician, Pune) on similar kind of sensor data. This is as per the suggestion of the 

gynecologist. It consists of synchronized measurements from Doppler Ultrasound, Near-

Infrared Spectroscopy (NIRS), fetal Electroencephalography (fEEG), and advanced 3D/4D 

ultrasound imaging. Each row represents a unique patient session with corresponding 

sensor values, clinical labels, and derived risk metrics. Key attributes include FHR mean 

and variability, umbilical and middle cerebral artery indices, oxygenated and 

deoxygenated hemoglobin concentrations, EEG spectral features, and structural 

measurements such as biparietal diameter and lateral ventricle width. 

The Table 1 provides details of the sensors used for fetal brain abnormality detection, 

including their placement as well as their working pattern and the clinical parameters 

used for measurement. Each sensor catches specific physiological, structural, or 

neurological key findings that contribute to detect early fetal brain abnormalities. 

Table 1. Sensor(s) and the parameters and the expected placement of the sensors. 

NO Sensor Name  Placement Parameters  

1. NIRS 
maternal abdomen, aligned with the 

location of the fetal head 
rSO2 

2. Doppler Ultrasound 

on the maternal abdomen and angled to 

target the fetal middle cerebral artery for 

cerebral blood flow assessment. 

FHR (Fetal Heart Rate), CPR 

(Cerebroplacental Ratio), UA PI (Umbilical 

Artery Pulsatility Index) 

3. Fetal EEG sensor 
externally on the mother’s abdomen, 

aligned with the position of the fetal head. 
Spectral Entropy, Delta Power 
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4 
Fetal MEG Sensor 

(SARASystem) 

The pregnant woman sits against a 

concave shield that covers her abdomen. 

Presence/absence of evoked brain 

responses, Source modeling patterns 

5 
Advanced 3D/4D 

ultrasound 
externally on the mother’s lower abdomen. 

Lateral Ventricle Width, Head 

Circumference 

2.2. Data Aggregation & Preprocessing 

The proposed framework uses several advanced sensors. Each plays a specific role in 

detecting early signs of fetal brain abnormalities. These devices collect physiological, 

structural, and neurological data, which is later processed and analyzed. 

1. Doppler Ultrasound 

Doppler ultrasound is a non-invasive method. It uses high-frequency sound waves 

to assess blood movement in vessels. In fetal monitoring, it is mainly used to study blood 

circulation, heart rate patterns, and flow velocity in key vessels such as the umbilical 

artery, middle cerebral artery (MCA), and ductus venosus. 

Working Principle: 

It is based on the Doppler effect. When sound waves reflect from moving blood cells, 

their frequency changes. This frequency shift is analyzed to calculate the speed and 

direction of blood flow. Two main Doppler modes are used: 

• Continuous Wave (CW) Doppler: Measures high-velocity blood flow but cannot 

pinpoint the exact depth. 

• Pulsed Wave (PW) Doppler: Measures flow at a specific depth and is commonly 

applied to cerebral vessels. 

Process: 

1. The probe is placed on the mother’s abdomen and aimed at the fetal MCA. 

2. A velocity-time waveform is displayed. Common measurements include peak 

systolic velocity (PSV) and pulsatility index (PI). 

3. These values are compared with gestational age-specific reference ranges to check if 

blood flow is normal. 

Clinical Importance: 

• Hypoxia and Brain-Sparing Effect: In cases of fetal growth restriction (FGR), blood is 

redirected to the brain. This appears as a reduced MCA PI. Detecting this early helps 

prevent brain damage. 

• Ischemia and HIE Risk: Abnormal MCA or umbilical artery flow may signal poor 

oxygen delivery, increasing the risk of hypoxic-ischemic encephalopathy (HIE). 

• Heart Rate Variability: Some Doppler devices also track fetal heart rate variability, 

which reflects neurological health. 

• Outcome Correlation: Abnormal Doppler readings are linked to conditions like 

cerebral palsy, seizures, and developmental delays after birth. 

2. Near-Infrared Spectroscopy (NIRS) 

NIRS is a non-invasive optical method. It measures oxygen levels in brain tissue by 

detecting light absorption differences in oxygenated and deoxygenated hemoglobin [2]. 

How It Works: 

• NIRS emits near-infrared light through the maternal abdomen into fetal tissues. 

• Detectors capture the reflected light. 

• Algorithms calculate the concentrations of oxygenated (HbO2) and deoxygenated 

hemoglobin (Hb). 

Process: 

1. NIRS probes are placed on the maternal abdomen, aligned with the fetal head. 
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2. Light is transmitted and received continuously. 

3. Regional cerebral oxygen saturation (rSO2) values are generated in real time. 

Clinical Use: 

• Early Hypoxia Detection: rSO2 below 50–55% suggests low brain oxygenation. 

• Labor Monitoring: Continuous monitoring during high-risk deliveries. 

• HIE Risk Stratification: Persistent low readings can indicate potential hypoxic-

ischemic brain injury. 

3. Fetal Electroencephalography (fEEG) 

fEEG records electrical activity from the fetal brain using surface electrodes on the 

mother’s abdomen. It provides direct insight into brain function and maturity. 

How It Works: 

• fEEG detects weak signals from fetal neurons. 

• These signals pass through fetal and maternal tissues to reach the electrodes. 

• Filters remove noise from the mother’s muscles and heart. 

Process: 

1. Electrodes are placed using ultrasound guidance for accurate positioning. 

2. Signals are recorded and analyzed in frequency bands: delta, theta, alpha, and beta. 

3. Abnormalities, such as low amplitude or poor signal complexity, may indicate 

developmental delays. 

Clinical Use: 

• Detects abnormal brain activity from the third trimester. 

• Identifies fetal seizures. 

• Monitors neurological development in high-risk pregnancies. 

4. Fetal Magnetoencephalography (fMEG) 

fMEG detects the magnetic fields produced by fetal brain activity. It uses 

Superconducting Quantum Interference Devices (SQUIDs) for high-resolution readings 

[3]. 

How It Works: 

• The mother sits against a concave sensor array in a magnetically shielded room. 

• fMEG captures magnetic signals passively. 

• Signals may be recorded at rest or during sensory stimulation. 

Clinical Use: 

• Evaluates functional brain development. 

• Detects delayed sensory responses. 

• Complements EEG with better spatial resolution for deep brain structures. 

5. 3D/4D Ultrasound Imaging 

3D/4D ultrasound produces high-resolution volumetric images of the fetal brain. 

How It Works: 

• Multiple image slices are captured and reconstructed into a 3D volume or displayed 

in motion (4D). 

• Post-processing allows detailed visualization of brain anatomy. 

Clinical Use: 

• Detects structural abnormalities like ventriculomegaly, lissencephaly, 

hydrocephalus, or corpus callosum agenesis. 

• Measures growth and symmetry of brain regions. 

• Offers immediate results and is often used before ordering a fetal MRI. 
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B. Signal Preprocessing 

Signal preprocessing is a crucial step in the proposed multisensor framework for 

detecting fetal brain abnormalities. The raw signals from Doppler ultrasound, Near-

Infrared Spectroscopy (NIRS), and fetal Electroencephalography (fEEG) vary in format, 

sampling frequency, and noise levels. Without proper preprocessing, these 

inconsistencies and artifacts can reduce the performance of AI-based classification models. 

This stage ensures all sensor outputs are filtered, normalized, and converted into a 

standard format suitable for multimodal data fusion and further analysis. 

The process begins with signal alignment and resampling, which is essential when 

multiple sensors operate at different sampling rates. To make the models more robust and 

handle small datasets, data augmentation techniques are applied. These include jittering, 

time-warping, window slicing, and signal flipping [16]. Such methods add variation to 

the training data and help reduce overfitting. Noise removal depends on the type of sensor. 

For Doppler signals, a bandpass filter between 0.5–4 Hz isolates fetal heart rate waveforms 

from other noise [6]. For NIRS signals, low-pass filtering (e.g., 0.5 Hz Butterworth) 

removes high-frequency noise, and high-pass filtering (e.g., 0.01 Hz cutoff) removes slow 

drifts [2]. Motion artifacts in NIRS are corrected using Principal Component Analysis 

(PCA) or spline interpolation. For fEEG, a bandpass filter of 0.5–40 Hz keeps relevant 

brain wave frequencies while reducing muscle activity and maternal ECG interference. A 

notch filter at 50 or 60 Hz removes electrical noise from power lines. Independent 

Component Analysis (ICA) is used to remove artifacts like eye movement, muscle 

contractions, and ECG contamination [13,14]. In some cases, adaptive filtering is added 

for better signal clarity. Finally, baseline correction and detrending are applied to remove 

slow variations that could distort the analysis, especially in long recordings. After 

preprocessing, the signals are clean, standardized, and ready for feature extraction. 

C. Feature Extraction 

Feature extraction is an important step in the framework. It converts raw 

multisensory signals into measurable parameters. These parameters can help identify 

early signs of fetal brain abnormalities. Each sensor type provides different information. 

Some give physiological data. Others provide neurological or structural details. The data 

from each sensor is first analysed separately. The gathered data is then combined for final 

analysis. key fetal heart rate (FHR) features are extracted from Doppler ultrasound signals. 

This basically contain baseline heart rate, short-term variability, and long-term variability 

[1,2]. It helps to measures how the autonomic nervous system controls the fetal heart. 

Continuous data on cerebral oxygenation will be collected from Near-Infrared 

Spectroscopy (NIRS). These signals are helped to analysis features like oxygenated 

hemoglobin, deoxygenated hemoglobin, total hemoglobin, and the Tissue Saturation 

Index (TSI). These measurements help in measuring cerebral blood flow. They are also 

useful in identifying the risk of hypoxic-ischemic encephalopathy (HIE) [3]. 
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Figure 2. Feture Extraction Detailed Process. 

Fetal Electroencephalography (fEEG) is examined to detect different patterns of 

neural activity. Power spectral densities are used to defined for standard EEG frequency 

bands. Which contain delta, theta, alpha, and beta waves. There are other metrics also 

present which are spectral entropy, signal complexity, and burst suppression ratios. These 

metrics also got calculated thought it. Such features are important for brain maturation 

and abnormal neural development [4,5]. Fetal Magnetoencephalography (fMEG) is 

mainly used for extract event-related field (ERF) components. These contain latency and 

amplitude responses for specific stimuli. Other features also got measured through band-

specific power and phase synchrony. Such features are important for detecting sensory 

processing issues and cortical delays [6]. Structural features also get computed from 

3D/4D ultrasound imaging. These contains volumetric measurements of brain regions and 

asymmetry indices. While processing Morphometric variables, such as corpus callosum 

length and lateral ventricle width also recorded. The gray-level co-occurrence matrix 

(GLCM) and local binary patterns (LBP) methods are used to extract texture features from 

it. Which helps to detect anatomical irregularities [7]. To achieve all these modalities, 

multi-sensor fusion is used. For calculating cross-modal features this framework 

combines signals from Doppler, NIRS, and EEG. Which also include joint entropy and 

correlation coefficients. After applying all this methodology, Dimensionality reduction 

methods, such as Principal Component Analysis (PCA) and Recursive Feature 

Elimination (RFE) are used to get better outcome. These whole processes optimize the 

feature set before classification AI models [8–10]. 

2.3. Threshold Setting and Abnormality Detection 

• NIRS: If brain oxygen level (rSO2) is below 50–55%, it may mean the brain is not 

getting enough oxygen (hypoxia). 

• Doppler Ultrasound: If the baby’s heart rate is less than 110 bpm (too slow) or more 

than 160 bpm (too fast), it can be a sign of distress. 
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• Fetal EEG: If brain activity measure (spectral entropy) is less than 0.8 or if there is 

too 

• much delta wave activity, it can mean abnormal brain function. 

• Fetal MEG: No fixed number—doctors look for whether brain responses are present 

or missing and check brain signal patterns. 

• 3D/4D Ultrasound: If the brain’s fluid spaces (lateral ventricles) are wider than 10 

mm or the head is very small (below 3rd percentile), it may mean a growth problem. 

Table 2 mentioning the threshold values with respect to fetal brain abnormality. 

These thresholds allow the system to flag potential fetal brain abnormalities and 

categorise cases as normal or abnormal based on sensor readings. 

Table 2. Sensor-Specific Clinical Thresholds for Fetal Brain Abnormality Detection. 

NO Sensor Name  Threshold Values 

1. NIRS rSO2 < 50–55% (suggests brain hypoxia) 

2. Doppler Ultrasound 
FHR < 110 bpm (bradycardia); FHR > 160 

bpm (tachycardia) 

3.  Fetal EEG sensor 
Low spectral entropy < 0.8 (suggests 

abnormal EEG); abnormal delta power  

4 Fetal MEG Sensor(SARA) 

No strict threshold; interpretation based on 

absence/presence of evoked responses and 

source modeling 

5  Advanced 3D/4D ultrasound externally on the mother’s lower abdomen. 

Conditions are flagged by monitoring changes in the following parameters: 

• Hypoxia: Brain oxygen level (rSO2) below 50–55% (NIRS). 

• Fetal Distress: Heart rate less than 110 bpm (bradycardia) or more than 160 bpm 

(tachycardia) (Doppler Ultrasound). 

• Neurological Dysfunction: Low spectral entropy (<0.8) or high delta wave activity 

(fEEG). 

• Brain Development Issues: Missing or abnormal brain responses detected in evoked 

signals (fMEG). 

• Structural Abnormalities: Lateral ventricle width greater than 10 mm 

(ventriculomegaly) or head size below the 3rd percentile (microcephaly) (3D/4D 

Ultrasound). 

• Normal: Fetuses that do not meet any abnormality conditions are classified as normal 

fetal brain. 

2.4. Methodology 

The proposed approach follows a hybrid pipeline integrating rule-based screening, 

machine learning classification, and deep learning for temporal and spatial data. 

1. Rule-based screening applies clinically established thresholds (e.g., rSO2 < 55%, LV 

width ≥ 10 mm, CPR < 1.0) for immediate alerts. 

2. For longitudinal signals and volumetric imaging, an LSTM + 1D CNN + 3D CNN 

fusion architecture is employed. 

3. Explainable AI methods such as SHAP (for tabular features) and Grad-CAM (for 

imaging) are integrated for interpretability. 

2.5. Dataset Used for the Study 
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Table 3 lists clinical thresholds for each sensor, defining normal and abnormal ranges 

for parameters like rSO2, FHR, CPR, spectral entropy, and ventricular width. These serve 

as the basis for rule-based abnormality detection. 

Table 4 shows Doppler Ultrasound data, including FHR, CPR, and UA PI, used to 

assess fetal cardiovascular health and detect signs of distress or poor placental function. 

Table 5 contains NIRS readings of rSO2, providing real-time insights into cerebral 

oxygenation and identifying risks of hypoxia. 

Table 6 presents fEEG data with spectral entropy and delta power ratios, helping 

detect reduced neural activity and early brain dysfunction. 

Table 7 includes 3D/4D ultrasound measurements like ventricular width and head 

circumference, identifying structural abnormalities such as ventriculomegaly and 

microcephaly. 

Table 3. Doppler Ultrasound Data Sample. 

patient

_id 

gestational_ag

e_wk 

session_times

tamp 

fhr_mean_

bpm 

fhr_sdnn

_ms 

ua_pulsatility_

index 

ua_resistance_

index 

mca_peak_systolic_vel

ocity_cms 

mca_pulsatility

_index 

cerebroplacenta

l_ratio 

FET_00

1 
24.9 

2024-08-

05T10:30:00 
145 5.37 0.89 0.79 38.7 1.25 1.4 

FET_00

2 
27.1 

2024-08-

06T10:30:00 
154 7.71 0.84 0.66 52.3 1.11 1.32 

FET_00

3 
28.2 

2024-08-

07T10:30:00 
147 11.88 0.87 0.78 38 1.34 1.54 

FET_00

4 
35.4 

2024-08-

08T10:30:00 
155 7.03 1.09 0.67 51.1 1.11 1.02 

FET_00

5 
30.2 

2024-08-

09T10:30:00 
142 4.77 0.98 0.53 49 1.4 1.43 

FET_00

6 
35.3 

2024-08-

10T10:30:00 
148 6.78 1.14 0.75 47.8 1.01 0.89 

FET_00

7 
34.3 

2024-08-

11T10:30:00 
158 7.75 1.03 0.66 39.6 1.21 1.17 

FET_00

8 
33.9 

2024-08-

12T10:30:00 
135 5.95 1.22 0.69 55 1.41 1.16 

FET_00

9 
26.3 

2024-08-

13T10:30:00 
134 11.2 0.71 0.58 33.3 1.1 1.55 

FET_01

0 
26.5 

2024-08-

14T10:30:00 
135 10.44 0.82 0.64 48.7 1.1 1.34 

Table 4. fEEG Data Sample. 

patient_id 
gestational_ag

e_wk 

session_timestam

p 

feeg_delta_p

ower_pct 

feeg_theta_p

ower_pct 

feeg_alpha_power_p

ct 

feeg_beta_pow

er_pct 

feeg_spectral_ent

ropy 

feeg_burst_sup

pression_ratio 

FET_001 24.9 
2024-08-

05T10:30:00 
30.4 17.9 13.7 5.3 0.91 0.2 

FET_002 27.1 
2024-08-

06T10:30:00 
41.7 13.1 9.9 5.6 0.98 0.11 

FET_003 28.2 
2024-08-

07T10:30:00 
37.5 17.6 11.2 7.6 0.81 0.12 

FET_004 35.4 
2024-08-

08T10:30:00 
51.0 18.0 5.4 3.7 1.24 0.12 

FET_005 30.2 
2024-08-

09T10:30:00 
35.9 15.6 8.9 4.6 0.74 0.12 

FET_006 35.3 
2024-08-

10T10:30:00 
43.5 19.1 13.3 9.6 0.7 0.07 

FET_007 34.3 
2024-08-

11T10:30:00 
45.7 23.6 14.6 7.1 0.73 0.12 

FET_008 33.9 
2024-08-

12T10:30:00 
35.4 10.2 8.0 3.3 1.38 0.17 

FET_009 26.3 
2024-08-

13T10:30:00 
31.8 15.4 9.2 4.3 1.02 0.16 
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FET_010 26.5 
2024-08-

14T10:30:00 
50.5 10.8 5.0 4.2 1.03 0.16 

Table 5. 3D/4D Ultrasound Data Sample. 

patient_id 
gestational_ag

e_wk 
session_timestamp us_bpd_mm 

us_head_c

ircumfere

nce_mm 

us_lateral_ventricle_wi

dth_mm 

us_cisterna_mag

na_depth_mm 

us_cerebellum_dia

meter_mm 

FET_001 24.9 2024-08-05T10:30:00 76.8 282.5 7.2 7.6 23.9 

FET_002 27.1 2024-08-06T10:30:00 80.9 289.2 7.0 5.9 24.1 

FET_003 28.2 2024-08-07T10:30:00 76.7 259.6 10.1 6.4 31.1 

FET_004 35.4 2024-08-08T10:30:00 77.1 265.2 7.6 6.9 34.3 

FET_005 30.2 2024-08-09T10:30:00 81.0 290.8 9.2 5.5 27.1 

FET_006 35.3 2024-08-10T10:30:00 76.5 231.9 6.5 5.9 22.5 

FET_007 34.3 2024-08-11T10:30:00 83.6 250.9 9.6 5.3 25.8 

FET_008 33.9 2024-08-12T10:30:00 61.8 250.6 6.6 3.5 31.6 

Table 6. Fetal MEG (SARA) Data sample. 

patient_id 
gestational_ag

e_wk 
session_timestamp 

meg_evoked_respo

nse_present 

meg_signal_po

wer_fT 

meg_delta_power_r

atio 

meg_theta_power

_ratio 

FET_001 24.9 2024-08-05T11:00:00 Yes 52.4 0.28 0.34 

FET_002 27.1 2024-08-06T11:05:00 Yes 55.1 0.25 0.36 

FET_003 28.2 2024-08-07T11:10:00 No 38.9 0.41 0.28 

FET_004 35.4 2024-08-08T11:15:00 Yes 60.3 0.26 0.33 

FET_005 30.2 2024-08-09T11:20:00 Yes 57.8 0.29 0.35 

FET_006 35.3 2024-08-10T11:25:00 Yes 59.2 0.27 0.32 

FET_007 34.3 2024-08-11T11:30:00 No 40.7 0.43 0.27 

FET_008 33.9 2024-08-12T11:35:00 Yes 62.5 0.25 0.36 

Table 7. Advanced 3D4D Ultrasound Data sample. 

patien

t_id 

gestational_a

ge_wk 

session_tim

estamp 

us_biparietal_dia

meter_mm 

us_head_circumfer

ence_mm 

us_lateral_ventricle_

width_mm 

us_cisterna_ma

gna_mm 

us_cerebellum_dia

meter_mm 

us_brain_volu

me_cm3 

FET_0

01 
24.9 

2024-08-

05T12:00:00 
76.8 282.5 7.2 7.6 23.9 130.5 

FET_0

02 
27.1 

2024-08-

06T12:05:00 
80.9 289.2 7 5.9 24.1 135.8 

FET_0

03 
28.2 

2024-08-

07T12:10:00 
76.7 259.6 10.1 6.4 31.1 142 

FET_0

04 
35.4 

2024-08-

08T12:15:00 
77.1 265.2 7.6 6.9 34.3 150.4 

FET_0

05 
30.2 

2024-08-

09T12:20:00 
81 290.8 9.2 5.5 27.1 140.2 

FET_0

06 
35.3 

2024-08-

10T12:25:00 
76.5 231.9 6.5 5.9 22.5 128.6 

FET_0

07 
34.3 

2024-08-

11T12:30:00 
83.6 250.9 9.6 5.3 25.8 133.7 

FET_0

08 
33.9 

2024-08-

12T12:35:00 
61.8 250.6 6.6 3.5 31.6 138.2 

FET_0

09 
26.3 

2024-08-

13T12:40:00 
67.9 286.3 6 4 25.3 134.5 

FET_0

10 
26.5 

2024-08-

14T12:45:00 
72.8 241.8 5 6.7 26.7 131.1 

2.6. Abnormality Prediction Using Machine Learning 

1. Normal vs Abnormal Determination 

To classify each patient as normal or abnormal, we apply a two-tiered decision 

approach combining rule-based medical thresholds and machine learning classification. 

This ensures that high-risk cases are identified immediately, while subtle patterns missed 

by thresholds can still be detected by the AI model 
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Table 8 outlines key sensor parameters, their normal ranges, and the abnormal 

conditions they indicate. Deviations from these ranges help identify fetal distress, hypoxia, 

low neural activity, or structural brain abnormalities. 

Table 8. Normal and Abnormal Ranges for Key Fetal Brain Health Parameters. 

Sensor Parameter Normal Range Abnormal Condition 

Doppler Ultrasound CPR (Cerebroplacental Ratio) ≥1.0 <1.0 → Fetal distress 

Doppler Ultrasound Umbilical Artery PI 0.6–1.2 >1.2 → Placental resistance 

NIRS rSO2 (%) ≥55 <55 → Hypoxia 

fEEG Spectral Entropy ≥0.7 <0.7 → Low neural activity 

3D/4D Ultrasound LV Width (mm) ≤10 >10 → Ventriculomegaly 

2. Model Architecture—Classification 

The methodology begins with MRI images of the fetal brain as the primary input. 

These images are processed through a Python script (nii_abnormality_detector.py) that 

manages both training and prediction tasks. In train mode, the system loads the MRI 

images, extracts important features from the brain slices, and uses them to train a 

LinearSVC classifier. The trained model is then saved as fetal_abn_clf.joblib for future use. 

In predict mode, the saved model is loaded, features are extracted from new MRI images, 

and the system predicts whether an abnormality is present. The process concludes with 

an output that classifies the brain images as either normal or abnormal. 

 

Figure 3. Exceution Process. 

(a) Time-Series Analysis 

• 1D Convolutional Neural Networks (1D-CNNs): Extract localized features from 

sensor signals. These may include sudden drops in oxygen saturation, abnormal 

heart rate variability, or epileptiform patterns in fEEG. 

• Long Short-Term Memory (LSTM) Networks: 

• Model sequential dependencies in the data. They capture both short-term 

fluctuations (e.g., temporary hypoxic episodes) and long-term changes (e.g., gradual 

decline in perfusion). 

(b) Spatial Imaging Analysis 

INPUT (MRI Images) 

nii_abnormality

_detector.py 

fetal_abn_clf.jobl

ib Train Mode 

Predict Mode 

OUTPUT (classified 

abnormality) 
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• 3D Convolutional Neural Networks (3D-CNNs): Process volumetric ultrasound 

data to detect anomalies like ventriculomegaly, abnormal cortical folding, or missing 

midline structures. 

• Image Augmentation: Improves model robustness by simulating variations in fetal 

position, gestational age, and maternal body type. 

(c) Cross-Modal Feature Fusion 

• Attention Mechanisms: Assign higher weight to clinically relevant data streams 

depending on the suspected abnormality type. 

• Transformer Models: Jointly analyze both time-series and image features, learning 

relationships between functional and structural parameters. 

(d) Ensemble Learning 

• Combines outputs from specialized models—for example, CNN for images and 

LSTM for signals. 

• Reduces bias, improves generalization, and lowers false positive and false negative 

rates. 

 

Figure 4. Exceution Process—output—Decision Boundaries of Different Classifiers for Normal vs. 

Abnormal Fetal MRI Classification. 

3. Classification Output 

The classification stage provides detailed results for clinical decision-making: 

• Abnormality Type: Specifies the detected condition, such as structural defect, 

functional impairment, or oxygenation-related risk 

 

Figure 5. Exceution Process—Classification output. 

• Severity Level: Categorizes the abnormality into low, moderate, or high risk using 

probability thresholds based on model confidence and clinical benchmarks. 
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• Confidence Score: Displays a numerical value (0–100%) indicating the prediction’s 

reliability. 

• Probabilistic Breakdown: Shows the likelihood of different possible diagnoses when 

multiple conditions are suspected. 

• Explainable AI Input and Output: Uses Grad-CAM for ultrasound images to 

highlight abnormal regions and visualizes attention weights for time-series data. 

 

Figure 6. Input image—abnormal.png. 

 

Figure 7. Output image—highlighted region. 

• Trend Indicators: Shows whether the condition is stable, improving, or worsening 

over time important for treatment planning. 

2.7. Results 

The proposed method validated 480 fetal recordings. It selects 277 high quality 

samples for preprocessing. Using this dataset, it achieved 92–94% accuracy, sensitivity 

around 93%, specificity near 93–97% with around 60 epoch. These results provide that it’s 

a reliable classification of normal and abnormal fetal brain conditions. It performs well 

compared to earlier IoT-based monitoring studies. 

 

A. Rule-Based Screening Outcomes 

The rule-based stage identified abnormality indicators in approximately 25% of the 

dataset sessions. Table below shows a sample of alerts generated: 

B. Machine Learning Performance 

Random Forest achieved an accuracy of 0.92 and ROC-AUC of 0.95 on the test set. 

XGBoost achieved slightly higher performance with accuracy of 0.94 and ROC-AUC 

of 0.97. 

Top features influencing model predictions included: CPR, rSO2, LV width, spectral 

entropy, and MCA PI. 

C. Explainability 

SHAP values highlighted that low CPR and reduced rSO2 were strong indicators of 

abnormal classification. Grad-CAM visualizations on ultrasound data clearly marked 

dilated ventricles in cases of ventriculomegaly. 
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Table 9 lists results for each patient using readings from different sensors like blood 

flow, oxygen levels, brain activity, and head measurements. Each value is checked against 

normal limits. If any reading is outside the safe range, it is noted in the “Breached 

Parameter(s)” column, and the “Final Status” shows whether the patient is normal or 

abnormal. 

Table 9. patient_classification_results. 

patient_id CPR UA_PI rSO2 Spectral_Entropy LV_Width 
Breached 

Parameter(s) 
Final Status 

FET_001 1.1 1 60 0.75 9 - Normal 

FET_002 1.2 1 50 0.78 9h rSOâ‚ <55% Abnormal 

FET_003 0.9 1 58 0.74 8 CPR <1.0 Abnormal 

FET_004 1.1 1.1 57 0.72 9 - Normal 

FET_005 1 1 59 0.76 12 
LV Width > 

10mm 
Abnormal 

FET_006 1.1 1 56 0.71 10 - Normal 

FET_007 1 1 54 0.65 9 

rSOâ‚ <55%, 

Spectral 

Entropy < 0.7 

Abnormal 

FET_008 1.3 1 57 0.72 9 - Normal 
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