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Abstract: The detection of fetal brain abnormalities at an early stage has a significant
impact with prenatal health care. The brain abnormalities arise a major concern for the
lifelong problem in newborns. Early detection of fetal brain abnormalities helps clinicians
to give extra care during pregnancy. They can plan the future treatment based on it. They
can go for several tests, like fetal MRI to prepare for the appropriate treatment after birth.
If these can be detected early and cure the impact these abnormalities can bring when they
are grown-up. These abnormalities include cerebral palsy, developmental delays, and
cognitive impairments. The existing methods for the detection of the fetal abnormalities
at an early stage have less accuracy and are time consuming complex processes. Here we
propose, a feasible multisensory framework-based system that helps to detect preliminary
fetal brain abnormalities. The system involves sensors like Doppler Ultrasound, Fetal
Electroencephalography (fEEG), Near-Infrared Spectroscopy (NIRS) and other imaging
systems combined together with the multimodal approach to provide an insight on the
brain growth and status. The Doppler Ultrasound sensor is used to identify fetal heart rate
patterns, NIRS is used to measures oxygen levels in the brain, helping to detect low
oxygen conditions that may harm brain development. fEEG is used to monitor brain
activity non-invasively by capturing magnetic signals from the fetal brain by giving high-
resolution insights on the neurological function. Other ultrasound imaging techniques are
used to detect the physical abnormalities like ventriculomegaly, corpus callosum
agenesis, and hydrocephalus. This proposed system uses Al models that work as an
ensembled method which comprises of Convolutional Neural Network (CNN) and Long
Short-Term Memory network (LSTM) for identifying the structural brain abnormalities.
The system has been validated against sourced sample data sets and proved to provide a
comparatively higher accuracy and better performance.

Keywords: feature extraction; CNNs; fetal monitoring; fetal brain abnormalities; LSTM

1. Introduction

The importance of women bearing children has been recognized since ancient times.
Motherhood brings significant changes in a woman'’s life. During pregnancy, both the
mother and the developing fetus require continuous care. Pregnancy is divided into three
trimesters. The first trimester spans from 0 to 13 gestational weeks (GW). The second
trimester covers 14 to 27 GW, and the third runs from 28 to 42 GW. A baby is usually born
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between 38 and 42 weeks of gestation. The early phase of brain development is critical for
the child’s overall health and cognitive functions. If fetal brain abnormalities are not
detected early, they can lead to serious neurological disorders such as cerebral palsy,
developmental delays, and motor dysfunctions. In modern medicine, there is a growing
emphasis on early diagnosis. This has encouraged the integration of sensor-based
technologies into prenatal care. These technologies are non-invasive and provide essential
data on both functional and structural aspects of the fetal brain.

The use of Internet of Things (IoT) solutions in healthcare is expanding rapidly. IoT
offers numerous benefits but also faces challenges. These include maintaining
communication quality, ensuring data security, managing efficient storage and retrieval,
and applying artificial intelligence (AI) for clinical decision support [1-7]. IoT-enabled
monitoring devices, often connected to one or more sensors, are increasingly used for
long-term health tracking. They also help address the shortage of medical specialists.
Despite these advancements, there are still issues to overcome—such as performance
optimization, secure communication, and reliable data storage [8-11]. The adoption of
clinical data systems has expanded the volume of electronic health records. This growth
has reduced costs and improved efficiency in healthcare. However, long-term, multi-
sensor monitoring produces large datasets that must be analyzed and stored according to
clinical, security, and regulatory requirements. Big data techniques are essential for
managing and analyzing this information [6-13]. Sensor technologies have changed how
fetal well-being is assessed. Continuous tracking of physiological signals helps clinicians
to identify the changes in brain development. These can be detected before any visible
abnormalities identified. Early detection helps us to timely intervention. It also enhances
the overall outcomes. Advancement in data processing and machine learning have
enhanced sensor data rendition. They allow more precise and predictive analysis. Sensor
based systems are very essential which provides accurate and real time outcome with the
help of parental monitoring. If we compare it with traditional diagnostic method, we
always get the better outcome. This research focuses on comprehensive, multi-sensor
framework which helps to detect the fetal brain abnormalities in early stage. The research
will combine multiple sensing technologies with intelligent data analysis. It helps ensure
safer pregnancies. It also helps in clinical decisions.

2. Proposed Framework

The directed framework is both structured and integrated. The aim of this framework
is detection of fetal brain abnormalities in early stage. For this, it combines senso r-based
data collection with Al-driven analysis. The process begins with the use of various non-
invasive sensors. These include Ultrasound, Tocodynamometer, Near-Infrared
Spectroscopy (NIRS), Electroencephalography (EEG), Accelerometers, and advanced
3D/4D ultrasound imaging [1-3].

Each of these devices contributes unique physiological, structural, or neurological
information. Once collected, the raw data undergoes preprocessing. This stage involves
removing noise and applying normalization techniques. Preprocessing ensures that the
input signals are standardized, consistent, and reliable for further analysis [4]. The next
stage is targeted feature extraction. At this point, the system isolates important clinical
indicators. Examples include oxygenation patterns, neural activity signals, and detailed
structural features of the fetal brain [5]. These features are compared against established
medical thresholds in real time. Any deviation is flagged as a potential early indication of
neurological risk [6]. After applying multimodal data fusion, it combines reading from all
sensors into one complete view of fetal brain health [7]. For analysis, the framework uses
advanced deep learning architectures. Which contain Rule-Based Screening (threshold-
driven alerts), LSTM + 1D CNN + 3D CNN fusion architecture, SHAP and Grad-CAM
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[8,9]. These models allow the system to process both temporal signals and volumetric
images. Which leads to the accuracy of abnormality detection. This offers clear,
interpretable insights for clinicians. Based on the risk indicators, clinicians can decide
whether to proceed with further diagnostics, such as fetal MRI or fMRI [10].
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Figure 1. Architectural digram for proposed Framework.

2.1. Dataset Collection

The dataset used in this study has been genrated under the guidance of the expertise
in the respective field with the proper knowledge (Dr Swati M.Landge Gynecologist And
Obstetrician, Pune) on similar kind of sensor data. This is as per the suggestion of the
gynecologist. It consists of synchronized measurements from Doppler Ultrasound, Near-
Infrared Spectroscopy (NIRS), fetal Electroencephalography (fEEG), and advanced 3D/4D
ultrasound imaging. Each row represents a unique patient session with corresponding
sensor values, clinical labels, and derived risk metrics. Key attributes include FHR mean
and variability, umbilical and middle cerebral artery indices, oxygenated and
deoxygenated hemoglobin concentrations, EEG spectral features, and structural
measurements such as biparietal diameter and lateral ventricle width.

The Table 1 provides details of the sensors used for fetal brain abnormality detection,
including their placement as well as their working pattern and the clinical parameters
used for measurement. Each sensor catches specific physiological, structural, or
neurological key findings that contribute to detect early fetal brain abnormalities.

Table 1. Sensor(s) and the parameters and the expected placement of the sensors.

NO Sensor Name Placement Parameters
maternal abdomen, aligned with the
I NIRS location of the fetal head 150
on the maternal abdomen and angled to FHR (Fetal Heart Rate), CPR
2. Doppler Ultrasound target the fetal middle cerebral artery for (Cerebroplacental Ratio), UA PI (Umbilical
cerebral blood flow assessment. Artery Pulsatility Index)
3. Fetal EEG sensor externally on the mother’s abdomen, Spectral Entropy, Delta Power

aligned with the position of the fetal head.
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Fetal MEG Sensor The pregnant woman sits against a Presence/absence of evoked brain
(SARASystem)  concave shield that covers her abdomen. responses, Source modeling patterns
Advanced 3D/4D Lateral Ventricle Width, Head

ultrasound

externally on the mother’s lower abdomen. .
Circumference

2.2. Data Aggregation & Preprocessing

The proposed framework uses several advanced sensors. Each plays a specific role in
detecting early signs of fetal brain abnormalities. These devices collect physiological,
structural, and neurological data, which is later processed and analyzed.

1. Doppler Ultrasound

Doppler ultrasound is a non-invasive method. It uses high-frequency sound waves
to assess blood movement in vessels. In fetal monitoring, it is mainly used to study blood
circulation, heart rate patterns, and flow velocity in key vessels such as the umbilical
artery, middle cerebral artery (MCA), and ductus venosus.

Working Principle:

It is based on the Doppler effect. When sound waves reflect from moving blood cells,
their frequency changes. This frequency shift is analyzed to calculate the speed and
direction of blood flow. Two main Doppler modes are used:

e  Continuous Wave (CW) Doppler: Measures high-velocity blood flow but cannot
pinpoint the exact depth.

e  Pulsed Wave (PW) Doppler: Measures flow at a specific depth and is commonly
applied to cerebral vessels.

Process:

1. The probe is placed on the mother’s abdomen and aimed at the fetal MCA.
A velocity-time waveform is displayed. Common measurements include peak
systolic velocity (PSV) and pulsatility index (PI).

3. These values are compared with gestational age-specific reference ranges to check if
blood flow is normal.

Clinical Importance:

e  Hypoxia and Brain-Sparing Effect: In cases of fetal growth restriction (FGR), blood is
redirected to the brain. This appears as a reduced MCA PI. Detecting this early helps
prevent brain damage.

e  Ischemia and HIE Risk: Abnormal MCA or umbilical artery flow may signal poor
oxygen delivery, increasing the risk of hypoxic-ischemic encephalopathy (HIE).

e  Heart Rate Variability: Some Doppler devices also track fetal heart rate variability,
which reflects neurological health.

¢ Outcome Correlation: Abnormal Doppler readings are linked to conditions like
cerebral palsy, seizures, and developmental delays after birth.

2. Near-Infrared Spectroscopy (NIRS)

NIRS is a non-invasive optical method. It measures oxygen levels in brain tissue by
detecting light absorption differences in oxygenated and deoxygenated hemoglobin [2].
How It Works:

e  NIRS emits near-infrared light through the maternal abdomen into fetal tissues.

e  Detectors capture the reflected light.

e  Algorithms calculate the concentrations of oxygenated (HbO:z) and deoxygenated
hemoglobin (Hb).
Process:

1. NIRS probes are placed on the maternal abdomen, aligned with the fetal head.
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Light is transmitted and received continuously.
3. Regional cerebral oxygen saturation (rSO2) values are generated in real time.

Clinical Use:

e  Early Hypoxia Detection: rSO2 below 50-55% suggests low brain oxygenation.

e  Labor Monitoring: Continuous monitoring during high-risk deliveries.

e HIE Risk Stratification: Persistent low readings can indicate potential hypoxic-
ischemic brain injury.

3. Fetal Electroencephalography (fEEG)

fEEG records electrical activity from the fetal brain using surface electrodes on the
mother’s abdomen. It provides direct insight into brain function and maturity.
How It Works:

e  fEEG detects weak signals from fetal neurons.
e These signals pass through fetal and maternal tissues to reach the electrodes.
e  Filters remove noise from the mother’s muscles and heart.

Process:
1. Electrodes are placed using ultrasound guidance for accurate positioning.
Signals are recorded and analyzed in frequency bands: delta, theta, alpha, and beta.
3. Abnormalities, such as low amplitude or poor signal complexity, may indicate
developmental delays.

Clinical Use:

e  Detects abnormal brain activity from the third trimester.
e  Identifies fetal seizures.
e  Monitors neurological development in high-risk pregnancies.

4.  Fetal Magnetoencephalography (fMEG)

fMEG detects the magnetic fields produced by fetal brain activity. It uses
Superconducting Quantum Interference Devices (SQUIDs) for high-resolution readings
[3].

How It Works:
e  The mother sits against a concave sensor array in a magnetically shielded room.
e  fMEG captures magnetic signals passively.
e  Signals may be recorded at rest or during sensory stimulation.

Clinical Use:
e  Evaluates functional brain development.
e  Detects delayed sensory responses.
e  Complements EEG with better spatial resolution for deep brain structures.

5. 3D/4D Ultrasound Imaging

3D/4D ultrasound produces high-resolution volumetric images of the fetal brain.
How It Works:

e  Multiple image slices are captured and reconstructed into a 3D volume or displayed
in motion (4D).

e  Post-processing allows detailed visualization of brain anatomy.
Clinical Use:

e Detects structural abnormalities like ventriculomegaly, lissencephaly,
hydrocephalus, or corpus callosum agenesis.

e  Measures growth and symmetry of brain regions.

e  Offers immediate results and is often used before ordering a fetal MRIL
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B. Signal Preprocessing

Signal preprocessing is a crucial step in the proposed multisensor framework for
detecting fetal brain abnormalities. The raw signals from Doppler ultrasound, Near-
Infrared Spectroscopy (NIRS), and fetal Electroencephalography (fEEG) vary in format,
sampling frequency, and noise levels. Without proper preprocessing, these
inconsistencies and artifacts can reduce the performance of Al-based classification models.
This stage ensures all sensor outputs are filtered, normalized, and converted into a
standard format suitable for multimodal data fusion and further analysis.

The process begins with signal alignment and resampling, which is essential when
multiple sensors operate at different sampling rates. To make the models more robust and
handle small datasets, data augmentation techniques are applied. These include jittering,
time-warping, window slicing, and signal flipping [16]. Such methods add variation to
the training data and help reduce overfitting. Noise removal depends on the type of sensor.
For Doppler signals, a bandpass filter between 0.5-4 Hz isolates fetal heart rate waveforms
from other noise [6]. For NIRS signals, low-pass filtering (e.g., 0.5 Hz Butterworth)
removes high-frequency noise, and high-pass filtering (e.g., 0.01 Hz cutoff) removes slow
drifts [2]. Motion artifacts in NIRS are corrected using Principal Component Analysis
(PCA) or spline interpolation. For fEEG, a bandpass filter of 0.5-40 Hz keeps relevant
brain wave frequencies while reducing muscle activity and maternal ECG interference. A
notch filter at 50 or 60 Hz removes electrical noise from power lines. Independent
Component Analysis (ICA) is used to remove artifacts like eye movement, muscle
contractions, and ECG contamination [13,14]. In some cases, adaptive filtering is added
for better signal clarity. Finally, baseline correction and detrending are applied to remove
slow variations that could distort the analysis, especially in long recordings. After
preprocessing, the signals are clean, standardized, and ready for feature extraction.

C. Feature Extraction

Feature extraction is an important step in the framework. It converts raw
multisensory signals into measurable parameters. These parameters can help identify
early signs of fetal brain abnormalities. Each sensor type provides different information.
Some give physiological data. Others provide neurological or structural details. The data
from each sensor is first analysed separately. The gathered data is then combined for final
analysis. key fetal heart rate (FHR) features are extracted from Doppler ultrasound signals.
This basically contain baseline heart rate, short-term variability, and long-term variability
[1,2]. It helps to measures how the autonomic nervous system controls the fetal heart.
Continuous data on cerebral oxygenation will be collected from Near-Infrared
Spectroscopy (NIRS). These signals are helped to analysis features like oxygenated
hemoglobin, deoxygenated hemoglobin, total hemoglobin, and the Tissue Saturation
Index (TSI). These measurements help in measuring cerebral blood flow. They are also
useful in identifying the risk of hypoxic-ischemic encephalopathy (HIE) [3].
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Figure 2. Feture Extraction Detailed Process.

Fetal Electroencephalography (fEEG) is examined to detect different patterns of
neural activity. Power spectral densities are used to defined for standard EEG frequency
bands. Which contain delta, theta, alpha, and beta waves. There are other metrics also
present which are spectral entropy, signal complexity, and burst suppression ratios. These
metrics also got calculated thought it. Such features are important for brain maturation
and abnormal neural development [4,5]. Fetal Magnetoencephalography (fMEG) is
mainly used for extract event-related field (ERF) components. These contain latency and
amplitude responses for specific stimuli. Other features also got measured through band-
specific power and phase synchrony. Such features are important for detecting sensory
processing issues and cortical delays [6]. Structural features also get computed from
3D/4D ultrasound imaging. These contains volumetric measurements of brain regions and
asymmetry indices. While processing Morphometric variables, such as corpus callosum
length and lateral ventricle width also recorded. The gray-level co-occurrence matrix
(GLCM) and local binary patterns (LBP) methods are used to extract texture features from
it. Which helps to detect anatomical irregularities [7]. To achieve all these modalities,
multi-sensor fusion is used. For calculating cross-modal features this framework
combines signals from Doppler, NIRS, and EEG. Which also include joint entropy and
correlation coefficients. After applying all this methodology, Dimensionality reduction
methods, such as Principal Component Analysis (PCA) and Recursive Feature
Elimination (RFE) are used to get better outcome. These whole processes optimize the
feature set before classification AI models [8-10].

2.3. Threshold Setting and Abnormality Detection

e  NIRS: If brain oxygen level (rSO2) is below 50-55%, it may mean the brain is not
getting enough oxygen (hypoxia).

e  Doppler Ultrasound: If the baby’s heart rate is less than 110 bpm (too slow) or more
than 160 bpm (too fast), it can be a sign of distress.
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e  Fetal EEG: If brain activity measure (spectral entropy) is less than 0.8 or if there is
too

e  much delta wave activity, it can mean abnormal brain function.

e  Fetal MEG: No fixed number —doctors look for whether brain responses are present
or missing and check brain signal patterns.

e 3D/4D Ultrasound: If the brain’s fluid spaces (lateral ventricles) are wider than 10
mm or the head is very small (below 3rd percentile), it may mean a growth problem.

Table 2 mentioning the threshold values with respect to fetal brain abnormality.
These thresholds allow the system to flag potential fetal brain abnormalities and
categorise cases as normal or abnormal based on sensor readings.

Table 2. Sensor-Specific Clinical Thresholds for Fetal Brain Abnormality Detection.

NO Sensor Name Threshold Values
1. NIRS rSO2 < 50-55% (suggests brain hypoxia)
5 Doppler Ultrasound FHR <110 bpm (bradycardl'a); FHR > 160
bpm (tachycardia)

Low spectral entropy < 0.8 (suggests

. Fetal EE
3 eta G sensor abnormal EEG); abnormal delta power

No strict threshold; interpretation based on
4 Fetal MEG Sensor(SARA)  absence/presence of evoked responses and
source modeling

5 Advanced 3D/4D ultrasound externally on the mother’s lower abdomen.

Conditions are flagged by monitoring changes in the following parameters:

e Hypoxia: Brain oxygen level (rSO:z) below 50-55% (NIRS).

e  Fetal Distress: Heart rate less than 110 bpm (bradycardia) or more than 160 bpm
(tachycardia) (Doppler Ultrasound).

¢ Neurological Dysfunction: Low spectral entropy (<0.8) or high delta wave activity
(fEEG).

e  Brain Development Issues: Missing or abnormal brain responses detected in evoked
signals (fMEG).

e  Structural Abnormalities: Lateral ventricle width greater than 10 mm
(ventriculomegaly) or head size below the 3rd percentile (microcephaly) (3D/4D
Ultrasound).

e  Normal: Fetuses that do not meet any abnormality conditions are classified as normal
fetal brain.

2.4. Methodology

The proposed approach follows a hybrid pipeline integrating rule-based screening,

machine learning classification, and deep learning for temporal and spatial data.

1. Rule-based screening applies clinically established thresholds (e.g., 1SO2 < 55%, LV
width > 10 mm, CPR < 1.0) for immediate alerts.

2. For longitudinal signals and volumetric imaging, an LSTM + 1D CNN + 3D CNN
fusion architecture is employed.

3. Explainable Al methods such as SHAP (for tabular features) and Grad-CAM (for
imaging) are integrated for interpretability.

2.5. Dataset Used for the Study
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Table 3 lists clinical thresholds for each sensor, defining normal and abnormal ranges
for parameters like rSO2, FHR, CPR, spectral entropy, and ventricular width. These serve
as the basis for rule-based abnormality detection.

Table 4 shows Doppler Ultrasound data, including FHR, CPR, and UA PI, used to
assess fetal cardiovascular health and detect signs of distress or poor placental function.

Table 5 contains NIRS readings of rSO2, providing real-time insights into cerebral
oxygenation and identifying risks of hypoxia.

Table 6 presents fEEG data with spectral entropy and delta power ratios, helping
detect reduced neural activity and early brain dysfunction.

Table 7 includes 3D/4D ultrasound measurements like ventricular width and head
circumference, identifying structural abnormalities such as ventriculomegaly and
microcephaly.

Table 3. Doppler Ultrasound Data Sample.

patient gestational_agsession_times fhr_mean_ fhr_sdnnua_pulsatility_ua_resistance_ mca_peak_systolic_vel mca_pulsatility cerebroplacenta

_id e_wk tamp bpm _ms index index ocity_cms _index 1_ratio
FETi_OO 24.9 052;)123-;560 145 5.37 0.89 0.79 38.7 1.25 14
FEE_OO 27.1 062;)123-;)5;)0 154 7.71 0.84 0.66 52.3 1.11 1.32
FEE_OO 28.2 072;)123-;560 147 11.88 0.87 0.78 38 1.34 1.54
FEZ_OO 354 082;)12(4)1;)52)0 155 7.03 1.09 0.67 51.1 1.11 1.02
FEE_OO 30.2 0 92;)123-;5 ;) 0 142 477 0.98 0.53 49 14 143
FEE_OO 35.3 10219123_;)(?;)0 148 6.78 1.14 0.75 47.8 1.01 0.89
FET7_OO 343 11219123_;)52)0 158 7.75 1.03 0.66 39.6 1.21 1.17
FEE_OO 33.9 1 22;)123-;)(? ;) 0 135 5.95 1.22 0.69 55 141 1.16
FEE_OO 26.3 1;19123_;)52)0 134 11.2 0.71 0.58 333 1.1 1.55
FET)_Ol 26.5 1;;)123_;)082)0 135 10.44 0.82 0.64 48.7 1.1 1.34

Table 4. fEEG Data Sample.
. ., gestational agsession_timestam feeg delta_p feeg theta_p feeg alpha power_pfeeg beta_pow feeg spectral_entfeeg burst_sup
patient_id e wk p ower_pct ower_pct ct er_pct ropy pression_ratio

FET_001 24.9 2024-05- 30.4 17.9 13.7 53 091 02

B 05T10:30:00

FET_002 27.1 0621912(;1-?5)5;)0 41.7 13.1 9.9 5.6 0.98 0.11

FET_003 28.2 072,;)123-;)560 37.5 17.6 11.2 7.6 0.81 0.12

FET_004 354 O;’?lzé-??(fg)o 51.0 18.0 54 37 1.24 0.12

FET_005 30.2 092,;)123-;)560 35.9 15.6 8.9 4.6 0.74 0.12

FET_006 35.3 102,;)123_;)560 435 19.1 13.3 9.6 0.7 0.07

FET_007 343 112,;)123_;)560 45.7 23.6 14.6 7.1 0.73 0.12

FET_008 33.9 122,;)123_;)560 354 10.2 8.0 33 1.38 0.17

FET_009 26.3 2024-05- 31.8 154 9.2 43 1.02 0.16

13T10:30:00
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2024-08-
FET_010 26.5 14T10:30:00 50.5 10.8 5.0 4.2 1.03 0.16
Table 5. 3D/4D Ultrasound Data Sample.
. us_head_c . . . .
. . gestational_ag . . . us_lateral_ventricle_wi us_cisterna_mag us_cerebellum_dia
patient_id session_timestamp us_bpd_mm ircumfere
e_wk dth_mm na_depth_mm meter_ mm
nce_mm
FET_001 249 2024-08-05T10:30:00 76.8 282.5 7.2 7.6 23.9
FET_002 27.1 2024-08-06T10:30:00 80.9 289.2 7.0 5.9 24.1
FET_003 28.2 2024-08-07T10:30:00 76.7 259.6 10.1 6.4 31.1
FET_004 354 2024-08-08T10:30:00 77.1 265.2 7.6 6.9 34.3
FET_005 30.2 2024-08-09T10:30:00 81.0 290.8 9.2 5.5 27.1
FET_006 35.3 2024-08-10T10:30:00 76.5 231.9 6.5 5.9 225
FET_007 34.3 2024-08-11T10:30:00 83.6 250.9 9.6 5.3 25.8
FET_008 339 2024-08-12T10:30:00 61.8 250.6 6.6 3.5 31.6
Table 6. Fetal MEG (SARA) Data sample.
patient id gestational_ag session_timestamp meg_evoked_respo meg_signal_po meg_delta'_power_rmeg_theta._power
e wk nse_present wer T atio _ratio

FET_001 249 2024-08-05T11:00:00 Yes 524 0.28 0.34
FET_002 27.1 2024-08-06T11:05:00 Yes 55.1 0.25 0.36
FET_003 28.2 2024-08-07T11:10:00 No 389 0.41 0.28
FET_004 35.4 2024-08-08T11:15:00 Yes 60.3 0.26 0.33
FET_005 30.2 2024-08-09T11:20:00 Yes 57.8 0.29 0.35
FET_006 35.3 2024-08-10T11:25:00 Yes 59.2 0.27 0.32
FET_007 34.3 2024-08-11T11:30:00 No 40.7 0.43 0.27
FET_008 33.9 2024-08-12T11:35:00 Yes 62.5 0.25 0.36

Table 7. Advanced 3D4D Ultrasound Data sample.

patien gestational_a session_tim us_biparietal_dia us_head_circumfer us_lateral_ventricle_ us_cisterna_ma us_cerebellum_dia us_brain_volu

tid ge_wk estamp meter_ mm ence_mm width_mm gha_mm meter_mm me_cm3
:
T e T w e
: L ms we
:

2.6. Abnormality Prediction Using Machine Learning

1. Normal vs Abnormal Determination

To classify each patient as normal or abnormal, we apply a two-tiered decision

approach combining rule-based medical thresholds and machine learning classification.

This ensures that high-risk cases are identified immediately, while subtle patterns missed
by thresholds can still be detected by the AI model
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Table 8 outlines key sensor parameters, their normal ranges, and the abnormal
conditions they indicate. Deviations from these ranges help identify fetal distress, hypoxia,
low neural activity, or structural brain abnormalities.

Table 8. Normal and Abnormal Ranges for Key Fetal Brain Health Parameters.

Sensor Parameter Normal Range Abnormal Condition
Doppler Ultrasound CPR (Cerebroplacental Ratio)>1.0 <1.0 — Fetal distress
Doppler Ultrasound Umbilical Artery PI 0.6-1.2 >1.2 — Placental resistance
NIRS SOz (%) >55 <55 — Hypoxia

fEEG Spectral Entropy >0.7 <0.7 — Low neural activity
3D/4D Ultrasound LV Width (mm) <10 >10 — Ventriculomegaly

2.  Model Architecture —Classification

The methodology begins with MRI images of the fetal brain as the primary input.
These images are processed through a Python script (nii_abnormality_detector.py) that
manages both training and prediction tasks. In train mode, the system loads the MRI
images, extracts important features from the brain slices, and uses them to train a
LinearSVC classifier. The trained model is then saved as fetal_abn_clf.joblib for future use.
In predict mode, the saved model is loaded, features are extracted from new MRI images,
and the system predicts whether an abnormality is present. The process concludes with
an output that classifies the brain images as either normal or abnormal.

INPUT (MRI Images)

fetal_abn_clf.jobl
Train Mode L

Predict Mode nii_abnormality
_detector.py

OUTPUT (classified

abnormality)

Figure 3. Exceution Process.

(a) Time-Series Analysis

e 1D Convolutional Neural Networks (1D-CNNs): Extract localized features from
sensor signals. These may include sudden drops in oxygen saturation, abnormal
heart rate variability, or epileptiform patterns in fEEG.

¢ Long Short-Term Memory (LSTM) Networks:

e Model sequential dependencies in the data. They capture both short-term
fluctuations (e.g., temporary hypoxic episodes) and long-term changes (e.g., gradual
decline in perfusion).

(b) Spatial Imaging Analysis
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3D Convolutional Neural Networks (3D-CNNs): Process volumetric ultrasound
data to detect anomalies like ventriculomegaly, abnormal cortical folding, or missing
midline structures.

Image Augmentation: Improves model robustness by simulating variations in fetal
position, gestational age, and maternal body type.

Cross-Modal Feature Fusion

Attention Mechanisms: Assign higher weight to clinically relevant data streams
depending on the suspected abnormality type.

Transformer Models: Jointly analyze both time-series and image features, learning
relationships between functional and structural parameters.

Ensemble Learning

Combines outputs from specialized models—for example, CNN for images and
LSTM for signals.

Reduces bias, improves generalization, and lowers false positive and false negative
rates.

Figure 4. Exceution Process—output—Decision Boundaries of Different Classifiers for Normal vs.
Abnormal Fetal MRI Classification.

3. Classification Output
The classification stage provides detailed results for clinical decision-making:
e  Abnormality Type: Specifies the detected condition, such as structural defect,
functional impairment, or oxygenation-related risk
mem, nii, gz + megacisterna_magna
normal,nil. gz + rarnal
colpe_colpa mil. gz = calpocephaly
dwm.nil. gz = dandywalkar

Figure 5. Exceution Process —Classification output.

Severity Level: Categorizes the abnormality into low, moderate, or high risk using
probability thresholds based on model confidence and clinical benchmarks.
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e  Confidence Score: Displays a numerical value (0-100%) indicating the prediction’s
reliability.

e  Probabilistic Breakdown: Shows the likelihood of different possible diagnoses when
multiple conditions are suspected.

e Explainable AI Input and Output: Uses Grad-CAM for ultrasound images to
highlight abnormal regions and visualizes attention weights for time-series data.

Jolll

Figure 6. Input image —abnormal.png.

Figure 7. Output image—highlighted region.

¢ Trend Indicators: Shows whether the condition is stable, improving, or worsening
over time important for treatment planning.

2.7. Results

The proposed method validated 480 fetal recordings. It selects 277 high quality
samples for preprocessing. Using this dataset, it achieved 92-94% accuracy, sensitivity
around 93%, specificity near 93-97% with around 60 epoch. These results provide that it’s
a reliable classification of normal and abnormal fetal brain conditions. It performs well
compared to earlier IoT-based monitoring studies.

t-3

t-3

A. Rule-Based Screening Outcomes

The rule-based stage identified abnormality indicators in approximately 25% of the
dataset sessions. Table below shows a sample of alerts generated:
B. Machine Learning Performance

Random Forest achieved an accuracy of 0.92 and ROC-AUC of 0.95 on the test set.

XGBoost achieved slightly higher performance with accuracy of 0.94 and ROC-AUC
of 0.97.

Top features influencing model predictions included: CPR, rSOz, LV width, spectral
entropy, and MCA PL
C. Explainability

SHAP values highlighted that low CPR and reduced rSO: were strong indicators of
abnormal classification. Grad-CAM visualizations on ultrasound data clearly marked
dilated ventricles in cases of ventriculomegaly.
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Table 9 lists results for each patient using readings from different sensors like blood

flow, oxygen levels, brain activity, and head measurements. Each value is checked against

normal limits. If any reading is outside the safe range, it is noted in the “Breached

Parameter(s)” column, and the “Final Status” shows whether the patient is normal or

abnormal.

Table 9. patient_classification_results.

patient_id CPR UA_PI rSO2  Spectral_Entropy LV_Width Breached Final Status
Parameter(s)
FET_001 1.1 1 60 0.75 9 - Normal
FET_002 1.2 1 50 0.78 9h rSO3, <55% Abnormal
FET_003 0.9 1 58 0.74 8 CPR<1.0 Abnormal
FET_004 1.1 1.1 57 0.72 9 - Normal
FET_005 1 1 59 0.76 12 LV Width > Abnormal
10mm
FET_006 1.1 1 56 0.71 10 - Normal
rSO3a, <55%,
FET_007 1 1 54 0.65 9 Spectral Abnormal
Entropy <0.7
FET_008 1.3 1 57 0.72 9 - Normal
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