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Abstract

Hysterectomy is a common surgery performed to remove a woman’s womb (uterus).
Monitoring health after a hysterectomy is also extremely important, especially if the ova-
ries are still present. Now, the functioning of the ovaries and their impact on a woman’s
metabolism or cardiovascular health are still in question, which is why we proposed this
study. The combination of wearable sensors and Artificial Intelligence helps with post-
hysterectomy health monitoring, especially for women who retain their ovaries. Ovarian
function remains vital for hormone balance, cardiovascular health, and metabolic regu-
larity. As traditional approaches lose effectiveness over time, this novel approach explores
data collection and Al-driven analytics to address these challenges.

Keywords: hysterectomy; Al-driven approach; wearable sensors; LSTM; CNN; ultra-
sound imaging

1. Introduction

Hysterectomy is the surgical removal of the uterus, a pear-shaped organ which plays
a crucial role in menstruation, fertility and nourishes the developing baby during preg-
nancy. Hysterectomy can be performed in many ways, it can be done through varying
counts of surgical cuts in the belly, A single cut in the belly called open/abdominal hys-
terectomy or three to four small surgical cuts followed by the use of a laparoscope or to
done in order to perform a robotic surgery. It can also be performed through surgical cuts
in the vagina, optionally using a laparoscope (called vaginal hysterectomy) [1]. There may
be many reasons why a woman may require a hysterectomy, some common reasons being
cancer of the uterus, endometrial cancer (in most cases), cancer of the cervix, cervical dys-
plasia that leads to cancer, cancer of the ovary etc. It is also performed at times as a meas-
ure for adenomyosis, or other severe long term vaginal bleeding which is not controlled
by other treatments, uterine prolapse, uterine fibroid, severe endometriosis, severe infec-
tions involving the uterus, etc. All parts of the uterus can be removed during a hysterec-
tomy, including the fallopian tubes and the ovaries [5].

There are some common side effects of a hysterectomy like vaginal bleeding and
drainage (lasts up to six weeks), difficulties during excretion, soreness/irritation at the
area of incision, fatigue and tiredness. It is a major surgery with a long recovery, coming
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with various side effects depending on the type of surgery the patient undergoes. Though
bleeding and infections remain a risk, many premenopausal patients do not prefer hys-
terectomy due to the decreased ovarian function after the surgery is performed. There are
indications of various menopausal symptoms across patients who have undergone hys-
terectomy. Even though ovarian preservation in increasingly common, studies have
proven that ovarian function fails 4 years earlier than the natural menopause after the
surgery. Studies have shown contradictory and conflicting results about the effect of hys-
terectomy on ovarian function [3,5]. Certain studies reported that hormonal levels were
not influenced after hysterectomy, no change detected in the FSH, E2 and other hormonal
levels evaluated at 3 months and 1 year time points. Another conflicting research shows
that the surgery interrupts the ovarian branch of the uterine artery and reduces the ovar-
ian blood supply by 50-70% resulting in decreased ovarian function. Ovarian function can
be assessed through its ability to produce eggs and hormones. This is achieved through
biochemical hormone tests, ultrasound imagery, other monitoring methods like Basal
Body temperature, Cervical Mucus monitoring, blood, urine and salivary tests etc. [4].
Despite these methodologies to assess ovarian functionality after hysterectomy, there are
several limitations to the technologies available to classify ovaries after the surgery, hence
leading to this research. This study demonstrates the use of algorithms CNN (Convolu-
tional Neural Network) and LSTM (Long Short-Term Memory) and a combination of the
two DFG-Net Hybrid model.

There are wearable devices which are used to track fertility cycles and can be worn
on wrists, fingers, intravaginally and inside the ear. There have been some notable ad-
vancements like the Oura Ring which is used to track menstruation through tracking
change in sleep cycle, temperature, heart rate and the Ava Ring which is used to track
fertility [6]. As these such devices become an important assistant to analyze certain phys-
iological parameters which can help monitor and track their reproductive health [7]. This
shows the need to evaluate and review the wearable technologies which are used detect
changes, monitor and understand a woman’s reproductive well-being. The study unfor-
tunately does not use data directly from these sources due to the strict privacy regulations
surrounding gynecological data, this study employed high-fidelity synthetic datasets and
is replicated clinical patterns of ovarian function, enabling development in AI models.

2. Materials and Methods
2.1. Case Study Outline

This research involves the use of algorithms CNN and LSTM to create Fusion DFG-
Net Hybrid model which is used to detect and classify ultrasound scans and hormonal
data into 5 classes divided on the basis of Ovarian Functionality. The model takes several
factors into consideration for both ultrasound transvaginal scans and other important var-
iables like Heart Rate (HR), Skin Temperature, GSR, Respiration Rate etc. which will be
justified further into the study to classify the provided data to a class. It has been trained
on synthetically generated data which replicates realistic available data which shows the
scope and potential of this particular Al approach to tackle the lack of technology to mon-
itor reproductive health.

2.2. Description of Wearable Sensor Types

Wearable patches and other smart wearables like rings and bracelets are some com-
monly used wearables to monitor and track reproductive health to get important hormo-
nal data. Though blood, urine and saliva tests and the derived samples are widely used
to measure important hormones like FSH, LH, progesterone, AMH, prolactin and thyroid
hormones, there can be inconveniences caused to the regular visits to the clinic, discomfort
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caused, and lack of accuracy at time which calls for innovation and technology used in the
field, allowing at-home checkups and personalized and accurate insights. The sex hor-
mone ‘estrogen’ plays an important role in understanding a woman’s health and fertility.
High levels of estrogen are more than just disclaimers of breast and ovarian cancer but
can also be an important indicator of Ovarian Functioning. Estradiol is the most potent
form present in the Estrogen class of hormones which is necessary for regulation and de-
velopment of secondary sexual characteristics and reproductive cycle [7]. This is collected
using blood or urine samples and is checked for and monitored in clinics and laboratory
environments. Recent developments have enabled scientists to detect the presence of es-
tradiol in sweat and researchers say it will be possible and easier to monitor estradiol
levels at home. This is the logic used by Caltech’s Wearable Estrogen Sweat Sensor, using
a wearable aptamer nano biosensor which is integrated into a skin worn patch. Other skin
interfaced technologies include the use of gold nanoparticle ‘MXene’ based detection elec-
trode with a low limit of detection. Wearables like watches, rings, shirts, straps which
monitor heart rate, ECG, heart rate variability (HRV), oxygen saturation (SpO2), respira-
tion, and skin temperature are also visible in this industry [8].

2.3. Data Acquisition for Research and Study

The data used for this study as mentioned earlier is synthetically generated and it
does not represent real patient information. This serves exclusively for research and
demonstration purposes in order to illustrate the potential of Artificial Intelligence tech-
niques to assess ovarian function. By generating synthetic data, Al driven approaches can
be explored and validated in a controlled environment, showing how these methods can
be applied in future clinical settings to monitor ovarian health accurately.

The CNN model uses ultrasound transvaginal scans for around 250 synthetically
generated cases under 5 classes divided on the basis of ovarian function. The classes are:
active, inactive, declining, perimenopausal and anomalous. There are around 50 cases for
each, case made in order to simulate realistic transvaginal ultrasound scans and make sure

that the model learns most visual features of the various ovarian functionality classes.

(a) (b)

Figure 1. Demonstration of synthetic dataset creation: (a) Base transvaginal image used for synthe-

sis; (b) Derived class images (active, inactive, declining, perimenopausal, anomalous).

The LSTM model uses some important hormonal variables which are crucial when it
comes to determining ovarian function. The data generated was tracked for 30 days per
case for around 50 cases per class. The LSTM model which was combined with the above
CNN model uses a synthetically generated dataset with the following variables:

E2 = Estradiol (pg/mL), Prog = Progesterone (ng/mL), GSR = Galvanic Skin Response,
BBT = Basal Body Temperature, HR = Heart Rate, HRV = Heart Rate Variability, BP = Sys-
tolic Blood Pressure, SpO:2 = Blood Oxygen Saturation, Sleep = Sleep Quality Score (%),
Steps = Daily Step Count. The above variables are crucial for understanding and dividing
the ovary’s function into one of the 5 classes [6-8]. The classes and logic used for this
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LSTM model is the same as the CNN model above which will allow the creation of the
DFG-Net Hybrid Model which incorporates both visual ultrasound transvaginal scans
and the above listed hormonal data to classify cases.

E2 (po/mi HRY

Figure 2. Wearable sensors measuring physiological and hormonal variables used for this study.

2.4. Model Architecture

Convolutional Neural Network (CNN) is a deep learning model which is specifi-
cally good for image-related tasks. It consists of layers which learn the features provided
to it for processing. Early layers learn simple features like edges in the image; middle lay-
ers study the textures and parts while the deeper layers learn object level features. Con-
volutional layers contain filters and kernels which slide over the image to detect specific
features. Pooling layers are used to reduce the spatial size, keeping only important infor-
mation and finally fully connected layers are used to classify images on the basis of
learned features.

Architecture of CNN used for the study starts with an input layer that takes grayscale
images of size 256 by 256 pixels with a single channel. It then applies the input to three
convolutional layers with larger filter sizes of 32, 64, and 128, each with a 3x3 kernel to
learn and extract features like edges, textures, and shapes. Following each of the convolu-
tional layers is a max pooling layer that halves the spatial dimensions, which is used to
retain the most important features while decreasing computational requirements. The
output of the last pooling layer is flattened into a one-dimensional vector of length 115,200
to set it up for the fully connected layers. A dense layer of 128 neurons, which is named
the “feature_layer,” is then obtained from this flattened vector to extract higher-level fea-
tures. A dropout layer with a rate of 40% is then utilized to prevent overfitting by ran-
domly deactivating certain neurons during training. Last, the output layer is a dense layer
of 5 neurons, which is the number of classes, and uses the softmax activation function to
produce probabilities for classification [10,11,15].

Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN) ar-
chitecture that is well suited to sequential data and time series. Unlike vanilla neural net-
works, LSTMs consist of memory cells with the capacity to retain information from long
sequences to learn temporal dependencies and patterns in data that arise over time. They
possess gates that control information flow, selecting what to forget, update, or remember,
and this allows them to circumvent the vanishing gradient problem associated with va-
nilla RNNs. Dropout layers may be added between LSTM layers to prevent overfitting by
randomly disabling some of the units during training. Fully connected (dense) layers sub-
sequently decode the sequence’s learned features to perform tasks like classification or
regression.
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The model starts with an LSTM layer of 64 units that consumes sequences of 260
timesteps and outputs a sequence of the same length but of reduced feature dimension.
The following is a dropout layer to avoid overfitting. The second LSTM layer is 32 units
and outputs only the final output vector, retaining the sequential information. The follow-
ing dropout layer is used. Next comes a dense layer of 32 neurons to further transform the
output before the final dense layer of 5 neurons gives out the classification output, which
is 5 target classes [12-14].

The suggested fusion classifier is a feedforward sequential neural network taking a
fixed-size feature vector as input, a feature fusion from the previous CNN and LSTM
models. The architecture includes three dense layers of decreasing neuron sizes 256, 128,
and 64, each but the last followed by dropout layers with a dropout of 30% to regularize
the model. The last dense layer is made up of neurons equal to the number of classes and
has a softmax activation to produce classification probabilities.

The features learned by the CNN model (learning fine-grained spatial patterns of an
image) and the LSTM model (learning temporal or sequential patterns) are fused into one
fused feature vector in an ‘.npy file’. The fused vector utilizes complementary information:
the CNN learns spatial image-level fine-grained features and the LSTM temporal or se-
quential patterns. The fusion model learns to classify the fused features more accurately
than the individual models.

2.5. Tools and Software Used

The study intensively used libraries like TensorFlow to use the models, encoding,
decoding and extraction functions. NumPy was used to generate and synthetically pro-
duce Hormonal data to be used onto the LSTM model. The library cv2 was used to gener-
ate the synthetic ultrasound data which had to be used for the CNN model. Matplotlib
was used to make changes in the augmentation to further strengthen the model.

3. Results and Inferences

Acknowledging the synthetic nature of the data used for this study, The accuracy
scores of the following models would not be an appropriate indicator of its utility as da-
tasets have been generated in a way that the model learns most of the features accurately
in order to correctly classify the input to the specified functioning class. The use of syn-
thetic data that was algorithmically generated based on known physiological ranges and
annotated imaging, results in the model achieves near-perfect classification accuracy.
However, these results should not be interpreted as clinical validation, but rather as a
demonstration of the feasibility and structure of the proposed fusion model (DFG-Net).
Performance may vary when applied to real-world patient data with inter-individual var-
iability and noise but can be adjusted accordingly to provided data.

3.1. CNN and LSTM Performance

The CNN model was provided a test image that was under the class ‘declining’ to
test its predictions. The model was successfully classifying images on the basis of Table 1.
and its training completed on the synthetically generated data. Output: (CNN Prediction
Probabilities: [[3.0913757e-04 1.6829275e-03 9.9800020e-01 7.5929743e-06 6.6543578e-08]]
CNN Predicted Class: 2 — Declining).
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Figure 3. CNN and LSTM model performance: (a) CNN input and prediction; (b) Model accuracy

with validation score; (¢) Output classification.

Table 1. Indicators of Ovarian Function used to create classes [9].

Class Numl.)er of Ovary Axes (Shape) Notes/Additional Variation
Follicles
ltipl 11-distri llicles;
Active 3-7 Normal (axes = (60, 40)) Multiple we dIStanted follic ,es’
regular shape and uniform spacing
. . Slightly smaller (axes = Follicles placed near edge or irregu-
Declining =2 (50, 35)) larly spaced; less dense
Inactive Shrunken (axes = (40,  No follicles; image may have in-
. 0 . .
/Failed 30)) creased echogenicity or texture grain
Perimeno- 1 (irregular Irregular (axes= (45, Off-centre, larger follicle with asym-
pausal  or distorted) 25), rotated) metry; some noise variation
Many small follicles, overlapping or
lorl =
Anomalous 8-15 Normal or large (axes clustered; may be unnaturally shaped

(60, 40) or (65, 45)) or oddly distributed

The LSTM model was provided a sample case for 30 days under the class ‘declining’
which it predicted accurately. Output: LSTM Prediction Probabilities: (Active: 0.1178,
Declining: 0.5426, Inactive: 0.0939, Perimenopausal: 0.0730, Anomalous: 0.1727; LSTM
Predicted Class: (Declining)).
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(a) (b)
Figure 4. LSTM model evaluation: (a) Dataset sample provided; (b) Predictions of LSTM model.

3.2. DFG-Net Hybrid Model Performance

This was the performance of the DFG-Net Hybrid Model after using feature extracted
layers from both CNN and LSTM network. The model was tested on the samples provided
individually to the models above to get the following output:

. i
[ - |
=
= 1111

Figure 5. DFG-Net hybrid model performance: (a) Confusion matrix; (b) Accuracy metrics; (c) Fu-

sion model input and predicted output.

[ LAty ret imvage [T reatine Extrecs
L,,qA_.. .__}_.
JN0x 20, greyrsale) L Cone Wastees

Figure 6. (a) Showing inputs taken by fusion model for CNN features (b) For LSTM features (c)
Correctly predicted output.

Fusion Classifier using both inputs taken by LSTM and CNN to classify case in one
class, ‘declining” which was predicted accurately.

4. Discussion

The results of this study point toward a promising approach in how ovarian health
may be monitored following hysterectomy for women who retain their ovaries. The hy-
brid model —DFG-Net—was able to classify ovarian function with remarkably high
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accuracy. Although the data used for this research was synthetically generated, the con-
sistent results across both CNN and LSTM models provide useful insight into the poten-
tial of such a system in real-life applications when provided with the appropriate data.

One of the main takeaways is how effectively the fusion model combines two very
different types of inputs: visual and physiological. The CNN handled the imaging com-
ponent, focusing on ovarian structure and follicle patterns from the ultrasound scans,
while the LSTM tracked physiological changes over time, such as hormonal levels and
other important signs. This multimodal approach is especially valuable in cases where
one modality (like ultrasound) becomes less reliable as ovarian visibility fades over the
years.

4.1. Comparison to Standard Procedures

Traditionally, gynecological follow-up after hysterectomy is based on occasional im-
aging and blood tests, sometimes only when symptoms present. These methods are peri-
odic, sometimes invasive, and not always sensitive to subtle or gradual changes. In con-
trast, wearable technologies provide round-the-clock, passive data collection with mini-
mal disruption to daily life. Coupled with Al, this stream of information can be processed
to spot trends or anomalies that might otherwise go unnoticed until much later.

4.2. Limitations and Considerations

Despite these encouraging outcomes, there are several limitations worth noting. First
and foremost, the model was tested on data that was artificially generated based on
known physiological patterns and ranges. While useful for building a proof-of-concept, it
doesn’t account for the variability seen in real-world patient data until it is trained and
evaluated. Additionally, the technology required to collect and analyse this type of data—
especially multi-sensor devices—may not be affordable or available in all settings.

In conclusion, this makes it crucial to validate the approach with clinical trials and
data collected from actual users over longer periods of time.

5. Conclusions

This research presents the development, progress and status of wearable technology
available and created to assess ovarian function after hysterectomy. Artificial intelligence
was also showcased as a potential technological approach. The DFG-Net fusion model,
which brings together time-series sensor inputs and ultrasound-based imaging, has
shown strong performance across the ovarian function classes. Beyond accuracy, its real
strength lies in its potential to provide consistent and diverse conclusions into a woman'’s
ovarian health after using a multimodal approach which is considering both visual and
physiological factors.

As gynaecology moves toward more individualized and preventive care models,
technologies like this may offer a valuable addition to standard follow-up protocols. It
reduces the gap between traditional diagnostics and upcoming digital health tools, poten-
tially reshaping how clinicians approach long-term monitoring. What comes next? the
priority should be to collect more diverse data—including real-world sensor recordings
and clinical images—to validate and fine-tune the approach. Clinical trials would help
measure not just accuracy but also the model’s impact on treatment outcomes. Addition-
ally, cost-effectiveness studies would be necessary to determine how and where such a
system could be realistically implemented. With these steps, this technology could move
beyond research and into everyday care, offering women a more informed and responsive
healthcare experience post-hysterectomy.
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