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Abstract 

Hysterectomy is a common surgery performed to remove a woman’s womb (uterus). 

Monitoring health after a hysterectomy is also extremely important, especially if the ova-

ries are still present. Now, the functioning of the ovaries and their impact on a woman’s 

metabolism or cardiovascular health are still in question, which is why we proposed this 

study. The combination of wearable sensors and Artificial Intelligence helps with post-

hysterectomy health monitoring, especially for women who retain their ovaries. Ovarian 

function remains vital for hormone balance, cardiovascular health, and metabolic regu-

larity. As traditional approaches lose effectiveness over time, this novel approach explores 

data collection and AI-driven analytics to address these challenges. 

Keywords: hysterectomy; AI-driven approach; wearable sensors; LSTM; CNN; ultra-

sound imaging 

 

1. Introduction 

Hysterectomy is the surgical removal of the uterus, a pear-shaped organ which plays 

a crucial role in menstruation, fertility and nourishes the developing baby during preg-

nancy. Hysterectomy can be performed in many ways, it can be done through varying 

counts of surgical cuts in the belly, A single cut in the belly called open/abdominal hys-

terectomy or three to four small surgical cuts followed by the use of a laparoscope or to 

done in order to perform a robotic surgery. It can also be performed through surgical cuts 

in the vagina, optionally using a laparoscope (called vaginal hysterectomy) [1]. There may 

be many reasons why a woman may require a hysterectomy, some common reasons being 

cancer of the uterus, endometrial cancer (in most cases), cancer of the cervix, cervical dys-

plasia that leads to cancer, cancer of the ovary etc. It is also performed at times as a meas-

ure for adenomyosis, or other severe long term vaginal bleeding which is not controlled 

by other treatments, uterine prolapse, uterine fibroid, severe endometriosis, severe infec-

tions involving the uterus, etc. All parts of the uterus can be removed during a hysterec-

tomy, including the fallopian tubes and the ovaries [5]. 

There are some common side effects of a hysterectomy like vaginal bleeding and 

drainage (lasts up to six weeks), difficulties during excretion, soreness/irritation at the 

area of incision, fatigue and tiredness. It is a major surgery with a long recovery, coming 
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with various side effects depending on the type of surgery the patient undergoes. Though 

bleeding and infections remain a risk, many premenopausal patients do not prefer hys-

terectomy due to the decreased ovarian function after the surgery is performed. There are 

indications of various menopausal symptoms across patients who have undergone hys-

terectomy. Even though ovarian preservation in increasingly common, studies have 

proven that ovarian function fails 4 years earlier than the natural menopause after the 

surgery. Studies have shown contradictory and conflicting results about the effect of hys-

terectomy on ovarian function [3,5]. Certain studies reported that hormonal levels were 

not influenced after hysterectomy, no change detected in the FSH, E2 and other hormonal 

levels evaluated at 3 months and 1 year time points. Another conflicting research shows 

that the surgery interrupts the ovarian branch of the uterine artery and reduces the ovar-

ian blood supply by 50–70% resulting in decreased ovarian function. Ovarian function can 

be assessed through its ability to produce eggs and hormones. This is achieved through 

biochemical hormone tests, ultrasound imagery, other monitoring methods like Basal 

Body temperature, Cervical Mucus monitoring, blood, urine and salivary tests etc. [4]. 

Despite these methodologies to assess ovarian functionality after hysterectomy, there are 

several limitations to the technologies available to classify ovaries after the surgery, hence 

leading to this research. This study demonstrates the use of algorithms CNN (Convolu-

tional Neural Network) and LSTM (Long Short-Term Memory) and a combination of the 

two DFG-Net Hybrid model. 

There are wearable devices which are used to track fertility cycles and can be worn 

on wrists, fingers, intravaginally and inside the ear. There have been some notable ad-

vancements like the Oura Ring which is used to track menstruation through tracking 

change in sleep cycle, temperature, heart rate and the Ava Ring which is used to track 

fertility [6]. As these such devices become an important assistant to analyze certain phys-

iological parameters which can help monitor and track their reproductive health [7]. This 

shows the need to evaluate and review the wearable technologies which are used detect 

changes, monitor and understand a woman’s reproductive well-being. The study unfor-

tunately does not use data directly from these sources due to the strict privacy regulations 

surrounding gynecological data, this study employed high-fidelity synthetic datasets and 

is replicated clinical patterns of ovarian function, enabling development in AI models. 

2. Materials and Methods 

2.1. Case Study Outline 

This research involves the use of algorithms CNN and LSTM to create Fusion DFG- 

Net Hybrid model which is used to detect and classify ultrasound scans and hormonal 

data into 5 classes divided on the basis of Ovarian Functionality. The model takes several 

factors into consideration for both ultrasound transvaginal scans and other important var-

iables like Heart Rate (HR), Skin Temperature, GSR, Respiration Rate etc. which will be 

justified further into the study to classify the provided data to a class. It has been trained 

on synthetically generated data which replicates realistic available data which shows the 

scope and potential of this particular AI approach to tackle the lack of technology to mon-

itor reproductive health. 

2.2. Description of Wearable Sensor Types 

Wearable patches and other smart wearables like rings and bracelets are some com-

monly used wearables to monitor and track reproductive health to get important hormo-

nal data. Though blood, urine and saliva tests and the derived samples are widely used 

to measure important hormones like FSH, LH, progesterone, AMH, prolactin and thyroid 

hormones, there can be inconveniences caused to the regular visits to the clinic, discomfort 
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caused, and lack of accuracy at time which calls for innovation and technology used in the 

field, allowing at-home checkups and personalized and accurate insights. The sex hor-

mone ‘estrogen’ plays an important role in understanding a woman’s health and fertility. 

High levels of estrogen are more than just disclaimers of breast and ovarian cancer but 

can also be an important indicator of Ovarian Functioning. Estradiol is the most potent 

form present in the Estrogen class of hormones which is necessary for regulation and de-

velopment of secondary sexual characteristics and reproductive cycle [7]. This is collected 

using blood or urine samples and is checked for and monitored in clinics and laboratory 

environments. Recent developments have enabled scientists to detect the presence of es-

tradiol in sweat and researchers say it will be possible and easier to monitor estradiol 

levels at home. This is the logic used by Caltech’s Wearable Estrogen Sweat Sensor, using 

a wearable aptamer nano biosensor which is integrated into a skin worn patch. Other skin 

interfaced technologies include the use of gold nanoparticle ‘MXene’ based detection elec-

trode with a low limit of detection. Wearables like watches, rings, shirts, straps which 

monitor heart rate, ECG, heart rate variability (HRV), oxygen saturation (SpO2), respira-

tion, and skin temperature are also visible in this industry [8]. 

2.3. Data Acquisition for Research and Study 

The data used for this study as mentioned earlier is synthetically generated and it 

does not represent real patient information. This serves exclusively for research and 

demonstration purposes in order to illustrate the potential of Artificial Intelligence tech-

niques to assess ovarian function. By generating synthetic data, AI driven approaches can 

be explored and validated in a controlled environment, showing how these methods can 

be applied in future clinical settings to monitor ovarian health accurately. 

The CNN model uses ultrasound transvaginal scans for around 250 synthetically 

generated cases under 5 classes divided on the basis of ovarian function. The classes are: 

active, inactive, declining, perimenopausal and anomalous. There are around 50 cases for 

each, case made in order to simulate realistic transvaginal ultrasound scans and make sure 

that the model learns most visual features of the various ovarian functionality classes. 

 
 

(a) (b) 

Figure 1. Demonstration of synthetic dataset creation: (a) Base transvaginal image used for synthe-

sis; (b) Derived class images (active, inactive, declining, perimenopausal, anomalous). 

The LSTM model uses some important hormonal variables which are crucial when it 

comes to determining ovarian function. The data generated was tracked for 30 days per 

case for around 50 cases per class. The LSTM model which was combined with the above 

CNN model uses a synthetically generated dataset with the following variables: 

E2 = Estradiol (pg/mL), Prog = Progesterone (ng/mL), GSR = Galvanic Skin Response, 

BBT = Basal Body Temperature, HR = Heart Rate, HRV = Heart Rate Variability, BP = Sys-

tolic Blood Pressure, SpO2 = Blood Oxygen Saturation, Sleep = Sleep Quality Score (%), 

Steps = Daily Step Count. The above variables are crucial for understanding and dividing 

the ovary’s function into one of the 5 classes [6–8]. The classes and logic used for this 
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LSTM model is the same as the CNN model above which will allow the creation of the 

DFG-Net Hybrid Model which incorporates both visual ultrasound transvaginal scans 

and the above listed hormonal data to classify cases. 

 

Figure 2. Wearable sensors measuring physiological and hormonal variables used for this study. 

2.4. Model Architecture 

Convolutional Neural Network (CNN)  is a deep learning model which is specifi-

cally good for image-related tasks. It consists of layers which learn the features provided 

to it for processing. Early layers learn simple features like edges in the image; middle lay-

ers study the textures and parts while the deeper layers learn object level features. Con-

volutional layers contain filters and kernels which slide over the image to detect specific 

features. Pooling layers are used to reduce the spatial size, keeping only important infor-

mation and finally fully connected layers are used to classify images on the basis of 

learned features. 

Architecture of CNN used for the study starts with an input layer that takes grayscale 

images of size 256 by 256 pixels with a single channel. It then applies the input to three 

convolutional layers with larger filter sizes of 32, 64, and 128, each with a 3x3 kernel to 

learn and extract features like edges, textures, and shapes. Following each of the convolu-

tional layers is a max pooling layer that halves the spatial dimensions, which is used to 

retain the most important features while decreasing computational requirements. The 

output of the last pooling layer is flattened into a one-dimensional vector of length 115,200 

to set it up for the fully connected layers. A dense layer of 128 neurons, which is named 

the “feature_layer,” is then obtained from this flattened vector to extract higher-level fea-

tures. A dropout layer with a rate of 40% is then utilized to prevent overfitting by ran-

domly deactivating certain neurons during training. Last, the output layer is a dense layer 

of 5 neurons, which is the number of classes, and uses the softmax activation function to 

produce probabilities for classification [10,11,15]. 

Long Short-Term Memory (LSTM) is a type of recurrent neural network (RNN) ar-

chitecture that is well suited to sequential data and time series. Unlike vanilla neural net-

works, LSTMs consist of memory cells with the capacity to retain information from long 

sequences to learn temporal dependencies and patterns in data that arise over time. They 

possess gates that control information flow, selecting what to forget, update, or remember, 

and this allows them to circumvent the vanishing gradient problem associated with va-

nilla RNNs. Dropout layers may be added between LSTM layers to prevent overfitting by 

randomly disabling some of the units during training. Fully connected (dense) layers sub-

sequently decode the sequence’s learned features to perform tasks like classification or 

regression.  
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The model starts with an LSTM layer of 64 units that consumes sequences of 260 

timesteps and outputs a sequence of the same length but of reduced feature dimension. 

The following is a dropout layer to avoid overfitting. The second LSTM layer is 32 units 

and outputs only the final output vector, retaining the sequential information. The follow-

ing dropout layer is used. Next comes a dense layer of 32 neurons to further transform the 

output before the final dense layer of 5 neurons gives out the classification output, which 

is 5 target classes [12–14]. 

The suggested fusion classifier is a feedforward sequential neural network taking a 

fixed-size feature vector as input, a feature fusion from the previous CNN and LSTM 

models. The architecture includes three dense layers of decreasing neuron sizes 256, 128, 

and 64, each but the last followed by dropout layers with a dropout of 30% to regularize 

the model. The last dense layer is made up of neurons equal to the number of classes and 

has a softmax activation to produce classification probabilities. 

The features learned by the CNN model (learning fine-grained spatial patterns of an 

image) and the LSTM model (learning temporal or sequential patterns) are fused into one 

fused feature vector in an ‘.npy file’. The fused vector utilizes complementary information: 

the CNN learns spatial image-level fine-grained features and the LSTM temporal or se-

quential patterns. The fusion model learns to classify the fused features more accurately 

than the individual models. 

2.5. Tools and Software Used 

The study intensively used libraries like TensorFlow to use the models, encoding, 

decoding and extraction functions. NumPy was used to generate and synthetically pro-

duce Hormonal data to be used onto the LSTM model. The library cv2 was used to gener-

ate the synthetic ultrasound data which had to be used for the CNN model. Matplotlib 

was used to make changes in the augmentation to further strengthen the model. 

3. Results and Inferences 

Acknowledging the synthetic nature of the data used for this study, The accuracy 

scores of the following models would not be an appropriate indicator of its utility as da-

tasets have been generated in a way that the model learns most of the features accurately 

in order to correctly classify the input to the specified functioning class. The use of syn-

thetic data that was algorithmically generated based on known physiological ranges and 

annotated imaging, results in the model achieves near-perfect classification accuracy. 

However, these results should not be interpreted as clinical validation, but rather as a 

demonstration of the feasibility and structure of the proposed fusion model (DFG-Net). 

Performance may vary when applied to real-world patient data with inter-individual var-

iability and noise but can be adjusted accordingly to provided data. 

3.1. CNN and LSTM Performance 

The CNN model was provided a test image that was under the class ‘declining’ to 

test its predictions. The model was successfully classifying images on the basis of Table 1. 

and its training completed on the synthetically generated data. Output: (CNN Prediction 

Probabilities: [[3.0913757e-04 1.6829275e-03 9.9800020e-01 7.5929743e-06 6.6543578e-08]] 

CNN Predicted Class: 2 → Declining). 
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Figure 3. CNN and LSTM model performance: (a) CNN input and prediction; (b) Model accuracy 

with validation score; (c) Output classification. 

Table 1. Indicators of Ovarian Function used to create classes [9]. 

Class 
Number of 

Follicles 
Ovary Axes (Shape) Notes/Additional Variation 

Active 3–7 Normal (axes = (60, 40)) 
Multiple well-distributed follicles; 

regular shape and uniform spacing 

Declining 1–2 
Slightly smaller (axes = 

(50, 35)) 

Follicles placed near edge or irregu-

larly spaced; less dense 

Inactive 

/Failed 
0 

Shrunken (axes = (40, 

30)) 

No follicles; image may have in-

creased echogenicity or texture grain 

Perimeno-

pausal 

1 (irregular 

or distorted) 

Irregular (axes = (45, 

25), rotated) 

Off-centre, larger follicle with asym-

metry; some noise variation 

Anomalous 8–15 
Normal or large (axes = 

(60, 40) or (65, 45)) 

Many small follicles, overlapping or 

clustered; may be unnaturally shaped 

or oddly distributed 

The LSTM model was provided a sample case for 30 days under the class ‘declining’ 

which it predicted accurately. Output: LSTM Prediction Probabilities: (Active: 0.1178, 

Declining: 0.5426, Inactive: 0.0939, Perimenopausal: 0.0730, Anomalous: 0.1727; LSTM 

Predicted Class: (Declining)). 
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Figure 4. LSTM model evaluation: (a) Dataset sample provided; (b) Predictions of LSTM model. 

3.2. DFG-Net Hybrid Model Performance 

This was the performance of the DFG-Net Hybrid Model after using feature extracted 

layers from both CNN and LSTM network. The model was tested on the samples provided 

individually to the models above to get the following output: 

 

Figure 5. DFG-Net hybrid model performance: (a) Confusion matrix; (b) Accuracy metrics; (c) Fu-

sion model input and predicted output. 

 

Figure 6. (a) Showing inputs taken by fusion model for CNN features (b) For LSTM features (c) 

Correctly predicted output. 

Fusion Classifier using both inputs taken by LSTM and CNN to classify case in one 

class, ‘declining’ which was predicted accurately. 

4. Discussion 

The results of this study point toward a promising approach in how ovarian health 

may be monitored following hysterectomy for women who retain their ovaries. The hy-

brid model—DFG-Net—was able to classify ovarian function with remarkably high 
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accuracy. Although the data used for this research was synthetically generated, the con-

sistent results across both CNN and LSTM models provide useful insight into the poten-

tial of such a system in real-life applications when provided with the appropriate data. 

One of the main takeaways is how effectively the fusion model combines two very 

different types of inputs: visual and physiological. The CNN handled the imaging com-

ponent, focusing on ovarian structure and follicle patterns from the ultrasound scans, 

while the LSTM tracked physiological changes over time, such as hormonal levels and 

other important signs. This multimodal approach is especially valuable in cases where 

one modality (like ultrasound) becomes less reliable as ovarian visibility fades over the 

years. 

4.1. Comparison to Standard Procedures 

Traditionally, gynecological follow-up after hysterectomy is based on occasional im-

aging and blood tests, sometimes only when symptoms present. These methods are peri-

odic, sometimes invasive, and not always sensitive to subtle or gradual changes. In con-

trast, wearable technologies provide round-the-clock, passive data collection with mini-

mal disruption to daily life. Coupled with AI, this stream of information can be processed 

to spot trends or anomalies that might otherwise go unnoticed until much later. 

4.2. Limitations and Considerations 

Despite these encouraging outcomes, there are several limitations worth noting. First 

and foremost, the model was tested on data that was artificially generated based on 

known physiological patterns and ranges. While useful for building a proof-of-concept, it 

doesn’t account for the variability seen in real-world patient data until it is trained and 

evaluated. Additionally, the technology required to collect and analyse this type of data—

especially multi-sensor devices—may not be affordable or available in all settings. 

In conclusion, this makes it crucial to validate the approach with clinical trials and 

data collected from actual users over longer periods of time. 

5. Conclusions 

This research presents the development, progress and status of wearable technology 

available and created to assess ovarian function after hysterectomy. Artificial intelligence 

was also showcased as a potential technological approach. The DFG-Net fusion model, 

which brings together time-series sensor inputs and ultrasound-based imaging, has 

shown strong performance across the ovarian function classes. Beyond accuracy, its real 

strength lies in its potential to provide consistent and diverse conclusions into a woman’s 

ovarian health after using a multimodal approach which is considering both visual and 

physiological factors. 

As gynaecology moves toward more individualized and preventive care models, 

technologies like this may offer a valuable addition to standard follow-up protocols. It 

reduces the gap between traditional diagnostics and upcoming digital health tools, poten-

tially reshaping how clinicians approach long-term monitoring. What comes next? the 

priority should be to collect more diverse data—including real-world sensor recordings 

and clinical images—to validate and fine-tune the approach. Clinical trials would help 

measure not just accuracy but also the model’s impact on treatment outcomes. Addition-

ally, cost-effectiveness studies would be necessary to determine how and where such a 

system could be realistically implemented. With these steps, this technology could move 

beyond research and into everyday care, offering women a more informed and responsive 

healthcare experience post-hysterectomy. 
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