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Abstract 

Strawberries, a high-value crop with growing demand, face increasing challenges from 

labour shortages, declining pollinator populations, and the limitations of inconsistent 

manual pollination. This paper presents an IoT-enabled robotic system designed to auto-

mate strawberry pollination in open-field raised-bed environments with minimal human 

intervention. The system consists of a mobile rover equipped with an ESP32-CAM for 

image capture and a robotic arm mounted on an Arduino Uno, capable of controlled X, Y, 

and Z positioning to perform targeted pollination. Images of strawberry beds are trans-

mitted to a locally deployed server, which uses a lightweight detection model to identify 

flowers. System components communicate asynchronously via HTTP and I2C protocols, 

and the onboard event-driven architecture enables responsive behaviour while minimiz-

ing RAM and power usage, which is an essential requirement for low-cost, field-deploy-

able robotics. The server also manages multi-rover scheduling through a custom priority 

queue designed for low-end hardware. In controlled load tests, the scheduler improved 

average response time by 6.9% and handled 2.4% more requests compared to the default 

queueing system, while maintaining stability. Preliminary field tests demonstrate success-

ful flower identification and reliable arm positioning under real-world conditions. Alt-

hough full system yield measurements are ongoing, current results validate the core de-

sign’s functional feasibility. Unlike previous systems that focus on greenhouse deploy-

ments or simpler navigation approaches, this work emphasizes modularity, affordability, 

and adaptability for small and medium farms, particularly in resource-constrained agri-

cultural regions such as Sri Lanka. This study presents a promising step toward autono-

mous and scalable pollination systems that integrate embedded systems, robotics, and 

IoT for practical use in precision agriculture. 

Keywords: IoT; strawberry pollination; autonomous rover; pollination; image processing; 

precision agriculture 

 

  

Academic Editor(s): Name 

Published: date 

Citation: K.R.M.R.T., K.;  

Wickramarathne, C.; Akmal, 

M.A.M.; Arachchi, W.A.D.C.S.W.; 

Dissanayaka, K.; Silva, N.;  

Wijesinghe, R.E. Towards  

Autonomous Raised Bed Flower  

Pollination with IoT and Robotics. 

Eng. Proc. 2025, 5, x. 

https://doi.org/10.3390/xxxxx 

Copyright: © 2025 by the authors. 

Submitted for possible open access 

publication under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Eng. Proc. 2025, 5, x FOR PEER REVIEW 2 of 13 
 

 

1. Introduction 

In Sri Lanka, 25% of the local population depends on the agricultural sector as their 

primary source of income. However, compared to other South Asian countries, Sri Lanka 

produces a smaller quantity of crops that meet international export quality standards. To 

achieve such high standards, small- to medium-scale farmers must invest more resources 

and labor to maintain quality control from crop cultivation to food processing, while also 

facing challenges from an unpredictable market [1]. 

High-value crops such as strawberries, grown in greenhouses under intensive labor 

care, demand significantly greater management and attention compared to other native 

crops with wide spread. Although large-scale farms are increasingly adopting hydroponic 

cultivation techniques to enhance efficiency and yield, small- to medium-scale farmers 

remain constrained in their capacity to implement such advanced systems. Consequently, 

their production practices largely depend on plastic-covered raised-bed farming methods, 

which serve as a more accessible yet less technologically advanced alternative. 

Many farmers devote comparatively less attention to flower pollination, despite its 

critical role in maximizing crop yields. Bees serve as the primary pollinators for numerous 

plant varieties, including strawberries. However, global warming, habitat loss, and the 

excessive use of pesticides have contributed to a rapid worldwide decline in bee popula-

tions. In greenhouse cultivation, where natural pollinator access is restricted, farmers are 

often forced to rely on alternative methods such as wind pollination or labor-intensive 

hand pollination to ensure adequate fruit set and yield. 

This study analyzes the effects of artificial pollination without direct human inter-

vention, focusing on its potential to enhance fruit quality through increased cross-polli-

nation among flowers. The discussion encompasses autonomous pollination, natural bee-

mediated pollination, and manual hand pollination. Furthermore, the research explores 

the use of an autonomous rover equipped with a robotic arm and modified sensors, eval-

uating its effectiveness in pollinating not only strawberry plants but also its potential ap-

plicability to other crop varieties. 

2. Literature Review 

2.1. Importance of Pollination in Agriculture 

Pollinators play a critical role in sustaining biodiversity and agricultural productiv-

ity, with more than 87.5% of flowering plant species relying on them, and animal-medi-

ated pollination supporting approximately 35% of global crop production [2]. These pol-

linators include a wide variety of species, ranging from winged insects such as bees and 

butterflies, to non-winged insects such as ants, as well as vertebrates including humming-

birds, bats, and even certain mammals like ruffed lemurs. Natural pollinators facilitate 

cross-pollination, thereby reducing the incidence of self-pollination within the same plant. 

This process enhances key fruit characteristics such as size, weight, and shape, all of which 

are essential for improving both the quality and marketability of harvests. 

In industrial agriculture, monoculture farming systems are prevalent, in contrast to 

traditional farming practices where multiple crops are cultivated together, often in har-

mony with natural pollinators. Monoculture farms, however, reduce biodiversity and 

limit opportunities for natural pollination, thereby increasing reliance on alternative pol-

lination methods such as wind. In certain crops, such as vanilla, natural or wind pollina-

tion is insufficient, making manual, labor-intensive hand pollination indispensable to en-

sure adequate fruit set and yield [3]. 
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2.2. Decline of Natural Pollinators 

In industrial agriculture, monoculture farms often depend heavily on the extensive 

use of pesticides, herbicides, and other agrochemicals to maintain crop health and sup-

press pests. While these chemicals are intended to protect crops, they inadvertently exert 

harmful effects on non-target organisms, including beneficial pollinators. Systemic pesti-

cides impair the foraging behavior, navigation ability, and reproductive success of bees 

and other insect pollinators, ultimately contributing to colony decline. Herbicides, alt-

hough primarily designed to eliminate weeds, indirectly reduce the availability of flow-

ering plants that serve as vital food sources for pollinators [4]. Consequently, the wide-

spread reliance on chemical inputs in monoculture farming systems not only undermines 

ecological balance but also exacerbates the global decline of pollinator populations, posing 

long-term risks to both biodiversity and agricultural sustainability. 

As a result of global warming, many pollinator species are exhibiting shifts in their 

behavior, distribution, and habitat preferences. Rising temperatures and altered precipi-

tation patterns disrupt flowering times and the synchrony between plants and their polli-

nators, leading to a decline in effective pollinators [5]. In addition, some species are forced 

to abandon their traditional habitats and migrate to more climatically suitable regions, 

often reducing their population density in previously cultivated areas. Such climate-

driven changes, combined with the direct effects of human interventions such as habitat 

loss, further exacerbate the global decline of pollinator populations. 

2.3. Existing Pollination Methods in Greenhouse Cultivation 

In greenhouse cultivation, some farmers collaborate with beekeepers to introduce 

managed colonies and facilitate natural pollination under controlled conditions. How-

ever, this practice is often subject to various restrictions, including limited space, altered 

light conditions, and artificial microclimates that may not be optimal for pollinator activ-

ity. In addition, not all pollinator species are equally suitable for every type of crop, as 

pollination efficiency depends on species-specific behaviors, body morphology, and 

flower characteristics. Consequently, the selection of appropriate pollinator species be-

comes a critical factor in determining the success of natural pollination within greenhouse 

environments [6]. 

Labor-intensive hand pollination is widely practiced in the cultivation of certain 

high-economic-value crops where natural or alternative pollination methods are insuffi-

cient. This technique allows for precise pollen transfer, ensuring fruit set and quality, but 

requires significant human effort and time investment [7]. Although effective, the high 

labor costs and limited scalability of hand pollination make it less feasible for large-scale 

commercial farming. 

2.4. Advances in Autonomous and Robotic Pollination 

Drones have been the focus of numerous research initiatives as an emerging tool for 

artificial pollination. Their application is particularly valuable in contexts where natural 

pollinators are absent and traditional methods, such as hand pollination, are impractical. 

Drones are especially effective in simulating wind pollination by dispersing pollen over a 

wide area. However, some research also highlights limitations, as drone-based systems 

are less effective for crops that require targeted or species-specific pollination, underscor-

ing the need for further technological advancements to improve precision and adaptabil-

ity [8]. 
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2.5. Pollination in the Sri Lankan Agricultural Context 

Native and wild bee species remain indispensable for sustaining Sri Lankan agricul-

ture, as they directly contribute to enhancing crop yields, fruit quality, and overall farm 

productivity. These pollinators still play a crucial role not only in traditional farming sys-

tems but also in large-scale crop cultivation, the preservation and promotion of native 

pollinator populations represent a vital component of long-term agricultural sustainabil-

ity and food security in such a situation [9]. 

2.6. Comparison with State of the Art 

Table 1 compares the proposed raised-bed ground rover pollination system with se-

lected representative solutions from the recent literature and industry (references chosen 

to represent drone systems, dedicated greenhouse robots, and other artificial pollination 

approaches). The table highlights differences in target environment, pollination mecha-

nism, and the specific novelty of our approach. 

Table 1. Comparison of the proposed system with representative state-of-the-art pollination solu-

tions. 

System Environment Mechanism Novelty 

This work (Proposed 

Rover) 
Raised beds (open-field) Brush + Vibration 

Affordable;  

Modular sensor fusion;  

Optimized for raised beds; Event-driven; 

BrambleBee 

Greenhouse rows  

(bramble/raspberry/black-

berry) 

Soft brush robotic arm 

Greenhouse-focused;  

high-cost; 

The proposed system is low-cost for 

open-field raised beds 

HarvestX Strawberry greenhouses Robotic arms/tools 

Commercial greenhouse only; 

The proposed system suits small/me-

dium farms 

Drone-based systems Orchards / large fields 
Downdraft airflow/ 

pollen dispersion 

Effective for orchards;  

The proposed system is ground level 

precision for raised beds 

Arugga ‘Polly’  Tomato greenhouses 
Air pulses (non-con-

tact) 

Airflow only; 

The proposed system  

uses direct pollen  

transfer with brush 

Ultrasonic/vibratory 

devices 

Indoor farms / vertical sys-

tems 

Ultrasonic pollen re-

lease 

Limited robustness; 

The proposed system 

ensures direct pollen  

transfer in open field 

3. Methodology 

The approach utilizes a ground-based autonomous rover, specifically designed for 

farms with raised beds ranging from a few inches up to one foot above the ground, allow-

ing for traversal beneath the beds. The system integrates the rover with a sensor-equipped 

pollination arm, a server, databases, and a mobile application for monitoring and control. 

3.1. System Overview 

The entire system, including its hardware components, has been designed with the 

objective of minimizing human intervention during operation while maintaining a low 

material cost. The primary focus of this design is to ensure affordability for farmers, 
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particularly in contexts where purchasing power is limited. By reducing the overall cost 

of ownership, the system encourages adoption and reduces barriers to accessing advanced 

technologies. In turn, this enables farmers to enhance their profit margins through im-

proved efficiency and reduced labor expenses. 

The rover, which also performs pollination tasks, is constructed using an aluminum 

frame as shown in Figure 1. 

 

Figure 1. Rover with robotic arm on top of testing flower setup. 

Aluminum was selected due to its cost-effectiveness and lightweight properties com-

pared to alternative materials such as wood or steel. To power the rover, either recharge-

able batteries or an AC power supply can be utilized, depending on the user’s preference. 

The power unit and controller unit are enclosed within a non-conductive plastic housing 

to ensure safety and protection of electronic components. 

The control system is based on two types of micro-controllers. An ESP32-CAM mod-

ule is employed to serve as both the communication interface and the vision system, ena-

bling image capture and wireless data transmission. In parallel, an Arduino Uno micro-

controller is used to manage the rover’s mechanical components and to process sensor 

data. Figure 2 presents the control panel of the system. 
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Figure 2. Top view of the rover controller panel with micro-controllers. 

Communication between the two micro-controllers is achieved through the Inter-In-

tegrated Circuit (I2C) protocol, ensuring reliable and synchronized operation during pol-

lination activities. 

The rover’s operation and control system is designed as either a fully or partially 

server-dependent architecture. The ESP32-CAM module communicates with the server to 

facilitate rover navigation and operational tasks. The server infrastructure can be de-

ployed locally on a user’s personal computer or remotely on cloud-based platforms, 

thereby enabling accessibility to a wider range of users through the internet. A Python-

based FastAPI framework is utilized to implement the server, which also supports the 

integration of a YOLOv8-based image processing model. This model processes image data 

transmitted from the ESP32-CAM, enabling object detection and decision-making re-

quired for autonomous pollination operations. 

The data generated during the rover operations are stored in a PostgreSQL database, 

which serves as the central data management system. This database facilitates seamless 

integration with the mobile application, enabling users to control the rover in real time 

and to analyze the data collected during its operation. Through this architecture, users 

gain access to both operational control and analytical insights, thereby enhancing usabil-

ity and decision-making in the pollination process. 

3.2. Image Processing Model 

During rover operations, the ESP32-CAM module captures data and transmits it to 

the server for processing. The server analyzes the incoming data to extract the spatial co-

ordinates of the flowers in the X–Y plane and records these coordinates in the database, 

along with the total count of detected flowers. The processed coordinates are then trans-

mitted back to the rover, enabling the robotic arm to accurately traverse the flower bed 

and perform the pollination process. An example of the flower detection output generated 

by the image processing server is provided in Figure 3. 
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Figure 3. Result from image processing function with coordinates. 

Additionally, a priority-based scheduling algorithm was implemented on the server 

to manage image processing requests more efficiently. The system adjusts request priori-

ties dynamically to balance resource usage and maintain response times. When the num-

ber of pending requests from a particular rover passes a pre-defined limit, that rover’s 

priority is raised. Response times for each route are monitored using an exponential mov-

ing average, and if the average goes beyond a threshold, the route’s priority is also raised. 

In addition, specific routes can be manually assigned higher priority when needed. 

3.3. Arm Angle Calculation 

The movements of the robotic arm are synchronized with the travel distance of the 

rover, which is determined by the server based on previously recorded operational data. 

This integration ensures coordinated navigation and pollination, thus improving accuracy 

and efficiency during field operations, as demonstrated by Figure 4. 

 

Figure 4. Robotic arm positioning during pollination. 

• Rover Y Movement, if the rover is at position Ry (in world Y-axis), and a flower is 

detected at image Y coordinate Yi, then the world Y-coordinate of the flower is: 

Yw = Ry + Yi  

• If the rover moves forward between Image 1 and Image 2: 

∆Ry = Ry2 − Ry1 = Y1 − Y3  

where Y1 and Y3 are the same flower seen in two frames. 

• Therefore, the traveled distance is: 

Dtravel = |Y1 − Y3|  

• Arm X Movement, the flower position in X-axis determines how much the arm 

should move left or right. If the arm base is at Xbase, and flower detected at image X 

coordinate Xi, then 

Xarm = Xi − Xbase  

• If Xarm > 0 the arm moves right, whereas Xarm < 0 indicates leftward motion. 
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• The arm must rotate to point towards the flower. Let the arm base be at (Xbase, Ybase) 

and the flower coordinates be (Xi, Yi). The angle is: 

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑌𝑖  −  𝑌𝑏𝑎𝑠𝑒

𝑋𝑖  −  𝑋𝑏𝑎𝑠𝑒

  

• This angle is relative to the horizontal axis. 

• Pollination on Targeted flower Position 

(Xw, Yw) = (Xi, Ry + Yi)  

• The arm must move to the position 

(Xarm, 𝜃)  

where 

Xarm = Xi − Xbase  

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑌𝑖  −  𝑌𝑏𝑎𝑠𝑒

𝑋𝑖  −  𝑋𝑏𝑎𝑠𝑒

  

• Iterative algorithm for each captured image, for each flower (Xi, Yi): 

1. Convert to world Y: 

Yw = Ry + Yi  

2. Compute arm displacement: 

X arm = Xi − Xbase  

3. Compute arm angle 

𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑌𝑖  −  𝑌𝑏𝑎𝑠𝑒

𝑋𝑖  −  𝑋𝑏𝑎𝑠𝑒

  

4. Move rover forward: 

Ry ← Ry + Dtravel  

3.4. Pollination End and the Sensor Setup 

The proposed flower detection system integrates three sensing modules: capacitive 

touch, infrared (IR) range, and color detection, into a compact, unified unit designed to 

differentiate strawberry flowers from surrounding leaves, fruits, and non-relevant agri-

cultural materials. 

The capacitive touch sensor (TTP223) detects conductive surfaces, including mois-

ture-rich plant structures, through variations in capacitance. An additional wire is incor-

porated to expand the detection area for flowers of varying sizes and to minimize inter-

ference from adjacent sensors and wiring. The sensor provides a binary output that indi-

cates the presence or absence of a conductive object. Figure 5 shows the touch sensor of 

the sensor setup. 

The IR range sensor, equipped with a variable resistor, enables adjustable detection 

distances from 2 to 80 cm, facilitating accurate flower proximity measurement. The sensor 

outputs boolean values corresponding to object detection within the set range. 
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Figure 5. Capacitive touch sensor with additional wire. 

The color detection module comprises a light-sensitive photo-resistor and an RGB 

LED. A custom algorithm sequentially activates red, green, and blue illumination, meas-

uring reflected light intensity for each wavelength. The resulting analog values (0–1023) 

are used to classify surface colour characteristics. 

To mitigate external light interference, the entire sensor assembly is enclosed in a 

black, non-reflective housing, ensuring consistent performance under varying ambient 

lighting conditions. The sensor system architecture is outlined in Figure 6. 

 

Figure 6. Sensor module. 

The colors of the flower under separate red, green, and blue illumination are shown 

in Figure 7a–c These conditions were used to measure the respective intensity values with 

the photo-resistor. When all three lights are activated simultaneously, the result is white 

illumination, as illustrated in Figure 7d. The sensor records values only under individual 

color illumination. 
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(a) (b) 

  
(c) (d) 

Figure 7. Flower under different illumination conditions. 

The recorded values, ranging from 0 to 1023 for each of the three colors, are compared 

with the predefined color range for the target flower. This comparison determines 

whether the sensor is positioned precisely above the intended flower for pollination. 

Figure 8 displays the final module fitted with a pollination brush. A small vibration 

motor, similar to the haptic feedback motors used in mobile phones, is attached to the 

brush to mimic the behavior of a bee when placed on a flower. The imbalance in the mo-

tor’s internal weight generates vibrations, with the intensity varying according to the ap-

plied voltage. During operation, pollen from one flower coats the tip of the brush. When 

the brush is moved to another flower, the collected pollen is deposited onto the second 

flower while simultaneously collecting its pollen onto the brush. 
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Figure 8. Sensor module with brush. 

3.5. Sensor Design Considerations 

The utilization of a custom-designed sensor is motivated by the need to avoid reli-

ance on camera modules and their associated complex algorithms for flower detection. 

This sensor provides critical data, including flower presence (liveness), relative distance, 

and color characteristics. Leveraging these parameters, a streamlined, purpose-built algo-

rithm allows precise commands to the pollination brush, enabling efficient and autono-

mous pollen collection. 

The detectable distance of the IR sensor corresponds to the distance to the tip of the 

brush used for pollination. This distance can be calibrated using the variable resistor that 

comes with the sensor. The maximum distance to the brush is also configured in this man-

ner. The capacitive sensor is positioned 0.25 cm above the tip of the brush, allowing the 

brush to reach the center of the flower while detecting the petals. Subsequently, the RGB 

lights illuminate sequentially, and their intensity values are measured via the photo-resis-

tor. These values are then compared with the predefined ranges assigned for each type of 

flower by the algorithm embedded in the micro-controller. 

4. Result 

4.1. Sensor Module Performance 

The effectiveness of pollen collection is also influenced by the type of brush em-

ployed, as different flower varieties require distinct brush characteristics for optimal per-

formance. Similarly, the accuracy of the flower detection sensor is dependent on flower 

size; since the infrared (IR) sensor requires a relatively large surface area for reliable de-

tection, it may produce false positives in cases involving smaller flowers. In addition, the 

capacitive touch sensor is susceptible to false signals on surfaces where residual electronic 

charges are present. 

Table 2 presents the average values obtained from the color sensor module, calcu-

lated over 12 repeated measurements. Each value was derived by computing the summa-

tion of the RGB components and dividing the result by three. The data indicate that darker 

surfaces yield comparatively lower values, whereas lighter surfaces produce substantially 

higher values. The readings are also influenced by the surface texture of the material, with 

all tested samples having a matte finish. Among these measurements, the leaf and flower 

values represent the primary test scenario. By distinguishing the difference between leaf 

and flower values, the sensor is able to determine whether the pollination process should 

be initiated. 

Table 2. Average color sensor readings (0–1023) for different coloured surfaces. 

Color Average Value 

Light Blue 93.1 

Gray 77.3 

Black 58.4 

Brown 70.1 

Dark Green 93.2 

Light Green 94.0 

Blue 52.5 

Strawberry Leaf 117.6 

Strawberry Flower  261.0 
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4.2. Model Detection Performance 

The flower detection model achieved a mean average precision (mAP) of 0.88 at an 

IoU threshold of 0.5, with a true positive rate of 88%. These results indicate that the model 

can reliably identify flowers in field conditions while making sure that missed detections 

remain limited. Occasional errors were observed when flowers had low contrast against 

the background, but overall performance was sufficient for integration into the scheduling 

and resource allocation system. The customized priority queue achieved a 6.9% improve-

ment in average response time (402.58ms vs 374.86ms) in load tests and handled 2.4% 

more requests (3,720 vs 3,632) while maintaining identical stability over an out-of-the-box 

priority queue. 

5. Conclusion 

The analysis of average values obtained from the color sensor module demonstrates 

its ability to distinguish between different surface colors under controlled conditions. The 

results confirm that darker surfaces consistently yield lower sensor values, while lighter 

surfaces produce higher values, with measurements further influenced by the matte sur-

face texture of the tested materials. Most importantly, the distinct difference between leaf 

and flower values provides a reliable basis for decision-making in the pollination process. 

This distinction enables the system to accurately identify target flowers, thereby support-

ing the automation of pollination in agricultural applications. 
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