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Abstract 

Pre-defined motion command profiles enable precise positioning and dynamic control in 

mechanical and mechatronic systems, maximizing efficiency and reliability. Real-world 

applications introduce dynamic factors like mechanical compliance, friction, and external 

disturbances that significantly impact system performance. Understanding these influ-

ences improves motion control strategy accuracy, robustness, and system stability. This 

study emphasises the role of systematic and stochastic disturbances in improving motion 

control and accuracy. It introduces a structured method for evaluating system behavior 

under realistic operational conditions using advanced vibration analysis and spatio-tem-

poral similarity measures. Using vibration indicators like amplitude, frequency content, 

phase relationships, crest factor, and acceleration root mean square (RMS) values, a com-

prehensive framework is created to quantify motion profile deviations. These indicators 

identify resonant frequencies, transient disturbances, and system inconsistencies, improv-

ing compensation strategies and predictive maintenance. A key contribution of this re-

search is the comparison of quantification methods for motion precision and robustness 

integrating vibration diagnostics and advanced motion similarity analysis to improve mo-

tion control and assessment. Multi-faceted motion deviation characterization is achieved 

by combining displacement, velocity, and acceleration measurements with statistical and 

mathematical analysis. To assess motion consistency, spatio-temporal similarity measures 

like Dynamic Time Warping (DTW), Hausdorff distance, and discrete Fréchet distance 

capture spatial alignment and temporal progression. These measures allow a more nu-

anced evaluation of motion quality than traditional error metrics, especially in variable-

speed dynamics, sampling rate inconsistencies, and complex motion patterns. Frequency-

domain methods like FFT and wavelet transforms detect oscillatory behaviors to improve 

motion analysis reliability. The study uses spectral analysis and time-frequency domain 

techniques to detect motion inconsistencies that may cause mechanical wear, instability, 

or energy waste. Crest factor analysis and phase relationship assessment can also detect 

misalignment, structural resonance, and transient perturbations that conventional metrics 

miss. 
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1. Introduction 

Mechanical vibrations are present in numerous applications, as they naturally arise 

wherever there is motion coupled with non-negligible inertia and finite stiffness [1]. 

Whether dealing with purely mechanical structures [2], mechatronic devices [3], or even 

complex fluid-structure interactions [4], vibrations can exert a significant influence on sys-

tem performances [5], longevity [6], and functionality [7]. Different utilization fields—

ranging from industrial systems [8] and manufacturing equipment [9] or transportations 

[10] to medical devices [11] and diagnostic tools [12]—exhibit meaningful vibratory ef-

fects. In most scenarios, vibrations are undesired, imposing challenges such as increased 

wear [13], reduced efficiency [14], noise generation [15], and potential safety issues [16]. 

Consequently, considerable research efforts have been devoted to mitigating [17] or atten-

uating [18] these phenomena through the design of suitable actuators [19], sensors, and 

control strategies. However, in certain cases [20], vibratory motions can assume useful 

behaviour for positive purposes, such as ultrasonic imaging in medicine [21] or high fre-

quency shaking in industrial material processing [22]. In these contexts, their characteri-

zation, measurement, and control are fundamental tasks, and literature presents a variety 

of well-established metrics to quantify key aspects of vibratory signals, including ampli-

tude [23], frequency content [24], damping ratios [25], and resonance phenomena [26]. 

In industrial machinery, vibrations often originate from rotating imbalance [27], mis-

alignment [28], or wear in components such as gears [29], bearings [30], and shafts [31]. 

Excessive vibrations in these systems can degrade product quality in manufacturing lines 

[32], accelerate fatigue of critical machine elements [33], and reduce operational efficiency 

[34]. As a result, industries have long relied on vibration mitigation strategies—ranging 

from passive damping [35] to sophisticated active control schemes—to maintain stable 

and predictable performance [36]. In the automotive and aerospace sectors, vibrations af-

fect both the structural integrity and comfort levels of vehicles [37] or aircraft [38], further 

underscoring the broad importance of effective vibration management. From a medical 

perspective, vibratory phenomena serve more specialized roles. One prominent example 

is ultrasonic imaging [21], where controlled mechanical waves in the ultrasonic frequency 

range provide detailed visualizations of internal tissues. Vibrational analysis has proven 

essential in diagnostic and therapeutic devices, for instance, in physiotherapy equipment 

where targeted vibrations can aid in muscle rehabilitation [39]. Furthermore, human body 

tremors are associated with different pathologies and must be measured [40] and, possi-

bly, attenuated [41]. In mechatronic systems and robotic platforms [42], unwanted vibra-

tions can result in positioning errors and degraded control performance [43]. Researchers 

in robotics often examine the dynamic interplay between actuators [44], mechanical link-

ages [45], and feedback loops [46] to suppress vibrations and achieve precise, stable move-

ments [47]. 

Beyond these direct applications, vibrations play a pivotal role in metrology, partic-

ularly in the design and operation of precision instruments [48]. Even minute oscillations 

can hamper the accuracy of measurement devices such as atomic force microscopes, coor-

dinate measuring machines, and other sensitive instrumentation [49]. Consequently, strat-

egies for vibration isolation and damping have become integral to precision engineering 

[50]. Moreover, the measurement of vibratory signals themselves can serve as a valuable 

diagnostic tool. Within condition monitoring frameworks, for instance, characteristic 
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changes in vibrational patterns can indicate the onset of damage or wear in machinery 

[51]. These changes include shifts in natural frequencies, alterations in amplitude and 

phase, and the appearance of new spectral components, all of which are tracked using 

standardized metrics. If not identified early and addressed, small mechanical defects can 

propagate into serious, expensive failures [52]. As a result, vibration-based condition 

monitoring has emerged as a critical technique in predictive maintenance, reducing 

downtime and operational costs. 

Despite the success of standard metrics for quantifying vibrations, researchers have 

increasingly acknowledged that real-world vibratory signals can be highly complex, com-

bining non-linear behaviors, multiple interacting modes, and noise [53]. In such contexts, 

typical metrics like peak amplitude or RMS values may only offer a partial view of the 

underlying dynamics. Frequency-domain methods, such as Fourier transforms or wavelet 

analysis, can further tease out structure in these signals, but they may still require assump-

tions about stationarity or linearity that do not always hold [54]. Consequently, there is 

considerable motivation to explore methods with broader applicability and fewer as-

sumptions. 

Although traditional metrics, such as root mean square (RMS), peak acceleration, ve-

locity, or displacement, power spectral density (PSD), and octave band analysis, among 

others, remain highly effective in capturing pertinent details of oscillatory behavior [55], 

a growing body of work can be explored to complement or enhance conventional ap-

proaches. In particular, the concept of signal “similarity,” typically employed in fields like 

data analysis, pattern recognition, and image processing, has garnered interest for its po-

tential to capture complex relationships that may not be fully encapsulated by canonical 

metrics [56]. This interest has been further amplified by advancements in computational 

power and machine learning algorithms, which offer new possibilities for analyzing high-

dimensional data sets in an efficient and scalable manner [57]. 

In essence, similarity-based approaches provide a way to compare two signals (or 

two data sets) to determine how closely they resemble each other. Various similarity or 

distance measures—such as the cosine similarity, dynamic time warping (DTW), and cor-

relation coefficients—can capture different aspects of the relationship between signals 

[56]. 

Recent studies illustrate the potential relevance of these approaches. For example, in 

structural health monitoring (SHM), some researchers have employed correlation-based 

techniques to detect damage by comparing the structural response at different time inter-

vals [58]. If the structural response in a nominally healthy state can be established as a 

reference signal, any subsequent changes in that response can be quantified by examining 

signal similarity, enabling the early detection of faults. Similar strategies have emerged in 

rotating machinery diagnosis, where the repeatability [59] of vibratory patterns across 

multiple cycles or operational regimes can serve as a diagnostic fingerprint [60]. By avoid-

ing the need to rely solely on spectral peaks or amplitude-based thresholds, similarity 

measures can provide a holistic view of how the entire signal shape evolves over time, 

capturing subtle changes that might otherwise go unnoticed. 

Nevertheless, the application of similarity metrics in vibration analysis also intro-

duces some challenges. Unlike many image or text data sets, vibratory data are often con-

tinuous in nature and can be subject to measurement noise, phase lags, and time shifts. 

Thus, one must carefully select and adapt the similarity measures to account for potential 

phase differences or time warping. Dynamic Time Warping, initially introduced for 

speech recognition, is one technique that can be adapted to address variations in time or 

speed, offering a robust way to compare signals of different lengths or with non-uniform 

stretching [61]. Furthermore, the computational burden of similarity-based analysis can 

be non-trivial, especially when dealing with large data sets or real-time monitoring 
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requirements. Therefore, implementing efficient algorithms and leveraging parallel com-

puting infrastructures may be necessary in practical settings. 

In light of these considerations, the present work aims to investigate the feasibility of 

using similarity metrics as a general-purpose tool for vibration analysis. More specifically, 

we seek to determine whether such measures can be correlated with established vibration 

metrics so that they might serve as surrogates or complementary indices in industrial or 

laboratory contexts. By doing so, one may reduce the reliance on highly specialized vibra-

tory models and, instead, apply universal data analysis methodologies that remain robust 

across different hardware platforms and operational conditions. This approach could help 

streamline the diagnostic process, minimizing the need for parameter tuning and model 

customization while still delivering actionable insights. 

2. Materials and Methods 

In this testing campaign, a nominal (commanded) motion profile is defined and em-

ployed as reference. A set of realistic motion profiles is then generated by superimposing 

vibration signals onto this reference, thereby simulating operational disturbances. These 

perturbed motions are compared with the nominal ones using both commonly adopted 

vibration metrics from the literature and similarity measures. Finally, the correlation be-

tween the similarity measures and the vibration metrics is evaluated to determine whether 

similarity-based indicators accurately capture the effects of vibration on the motion pro-

files. 

2.1. Vibrational Metrics 

The vibration signals underwent quantitative analysis through multiple statistical 

and frequency-domain metrics extraction to fully understand their dynamic movement. 

The Amplitude measurement represented the difference between the highest and lowest 

signal values (1). The Standard Deviation (SD) (2) quantified signal dispersion around the 

mean. The RMS value calculation from (3) delivered both the effective vibration magni-

tude and energy content measurement. The Peak Value represented the highest absolute 

amplitude (4) and the Peak-to-Peak (P2P) amplitude (5) measured the largest signal fluc-

tuations. The Crest Factor (CF) analysis measured vibration impulsiveness by dividing 

peak amplitude values by RMS values (6)) thus indicating more intense impulsive events. 

The Fast Fourier Transform (FFT) analysis revealed the Dominant Frequency and its 

associated Dominant Amplitude which showed the main harmonic content of the signal. 

The Frequency Bandwidth (BW95%) represented the effective frequency range that con-

tained 95% of the signal’s spectral energy and was determined from the cumulative en-

ergy spectrum. Kurtosis (7) and Skewness (8) statistical shape descriptors measured the 

distribution’s sharpness and symmetry respectively. The vibration levels were analyzed 

using Mean (9) and Median xmed as central tendency measures. The ISO 10816 standard-

based vibration severity classification system was used with RMS values to divide the 

measurements into four categories: Class A (Good, RMS < 0.01), Class B (Acceptable, RMS 

< 0.03), Class C (Unsatisfactory, RMS < 0.07), and Class D (Unacceptable, RMS ≥ 0.07). The 

complete set of metrics provided strong capabilities for both detailed characterization and 

diagnostic analysis of vibration phenomena. 

A = (xmax − xmin)/2 (1) 

SD = √
1

N
∑(xi − x̅)2

N

i=1

 (2) 
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RMS = √
1

N
∑ xi

2

N

i=1

 (3) 

xpeak = max|xi| (4) 

xP2P = xmax − xmin (5) 

𝐶𝐹 =
𝑥𝑝𝑒𝑎𝑘

𝑅𝑀𝑆
 (6) 

𝐾 =

1
𝑁

∑ (𝑥𝑖 − 𝑥̅)4𝑁
𝑖=1

𝑆𝐷4
 (7) 

𝑆 =

1
𝑁

∑ (𝑥𝑖 − 𝑥̅)3𝑁
𝑖=1

𝑆𝐷3
 (8) 

𝑥̅ =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

 (9) 

2.2. Similarity Metrics 

Similarity between pairs of signals (commanded motion and realistic vibrating mo-

tion) was assessed using multiple quantitative metrics to comprehensively capture vari-

ous aspects of their correspondence. The Mean Squared Error (MSE) (10) quantified aver-

age squared deviations, while the Root Mean Squared Error (RMSE) (11) provided a meas-

ure of error magnitude in the original scale. The Mean Absolute Error (MAE) (12) offered 

a robust indication of average absolute deviations. Linear correlation was assessed by the 

Pearson Correlation Coefficient (r) [62], which evaluated the strength and direction of the 

linear relationship between signals and is computed as in (13), where x̄ and ȳ  represent 

the means of the respective signals. Vector-based similarity measures included the Euclid-

ean Distance (14) indicating the magnitude difference [63], and Cosine Similarity (15) cap-

turing directional similarity irrespective of amplitude differences [64]. A discretized Jac-

card Index assessed overlap between sets A and B derived from binned signal amplitudes 

and is computed as in (16) [65]. Temporal alignment was examined through Dynamic 

Time Warping (DTW) [61], which finds the optimal alignment minimizing cumulative 

distance, accommodating temporal variations between signals, and is computed recur-

sively as in (17) with the boundaries in (18). The Normalized Cross-Correlation (NCC) 

(19) quantified similarity considering lag and timing differences [66]. The adapted one-

dimensional Structural Similarity Index (SSIM) (20) evaluated perceptual similarity based 

on mean (μ), variance (σ2), and covariance (σxy) [67]. Point-wise similarity was quantified 

by the Percentage of Similar Points within a tolerance τ = 5% (21), reflecting the proportion 

of values within the predefined tolerance. Shape and local discrepancies were captured 

by the Hausdorff Distance [68], which computes the maximum minimal distance (22) be-

tween points of two signals A and B as defined in (23) and the Fréchet Distance [69], de-

fining the minimum length required to traverse both signals simultaneously, sensitive to 

sequential correspondence, as defined in (24), where α and β are continuous, non-decreas-

ing reparameterizations of the signal curves and computed practically as in (25) via a re-

currence relation using a cost matrix c(i, j) with proper initialization at the boundaries. 

The discrete-pattern similarity was measured by the normalized Levenshtein Distance 

[70], reflecting edit operations (insertions, deletions, or substitutions) required to 
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transform one discretized signal sequence into another (26). Lastly, the Mahalanobis Dis-

tance (27), accounted for variance normalization, enabling comparisons considering sig-

nal dispersion [71]. These diverse metrics collectively facilitated a robust, multidimen-

sional comparison of the investigated signals. 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑥𝑖 − 𝑦𝑖)2

𝑁

𝑖=1

 (10) 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 (11) 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑥𝑖 − 𝑦𝑖|

𝑁

𝑖=1

 (12) 

𝑟 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑖

√∑ (𝑥𝑖 − 𝑥̅)2 ∑ (𝑦𝑖 − 𝑦̅)2
𝑖𝑖

 (13) 

𝑑𝐸𝑢𝑐 = √∑(𝑥𝑖 − 𝑦𝑖)
2

𝑖

 (14) 

𝑐𝑜𝑠(𝜃) =
∑ 𝑥𝑖𝑦𝑖𝑖

√∑ 𝑥𝑖
2

𝑖 √∑ 𝑦𝑖
2

𝑖

 
(15) 

𝐽(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 (16) 

𝐷𝑇𝑊(𝑖, 𝑗) = |𝑥𝑖 − 𝑦𝑗| +𝑚𝑖𝑛{ 𝐷𝑇𝑊(𝑖 − 1, 𝑗), 𝐷𝑇𝑊(𝑖, 𝑗 − 1), 𝐷𝑇𝑊(𝑖 − 1, 𝑗 − 1)} (17) 

𝐷𝑇𝑊(0,0) = 0, 𝐷𝑇𝑊(𝑖, 0) = 𝐷𝑇𝑊(0, 𝑗) = ∞ 𝑓𝑜𝑟 𝑖, 𝑗 ≥ 1 (18) 

𝑁𝐶𝐶 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑖

√∑ (𝑥𝑖 − 𝑥̅)2
𝑖 √∑ (𝑦𝑖 − 𝑦̅)2

𝑖

 
(19) 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) ==
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
 (20) 

𝑃 =
Number of points where |𝑥𝑖 − 𝑦𝑖| < τ

𝑁
 (21) 

𝑑𝐻𝑎𝑢𝑠𝑑𝑜𝑟𝑓𝑓(𝐴, 𝐵) = max {
max
𝑎∈𝐴

min
𝑏∈𝐵

‖𝑎 − 𝑏‖ ,

max
𝑏∈𝐵

min
𝑎∈𝐴

‖𝑏 − 𝑎‖
} (22) 

𝐴 = {(𝑖, 𝑥𝑖)}, 𝐵 = {(𝑖, 𝑦𝑖)} (23) 

𝑑𝐹𝑟é𝑐ℎ𝑒𝑡(𝐴, 𝐵) = min
𝛼,𝛽

max
𝑡∈[0,1]

∥ 𝐴(𝛼(𝑡)) − 𝐵(𝛽(𝑡)) ∥ (24) 

𝑐(𝑖, 𝑗) = 𝑚𝑎𝑥 {
𝑚𝑖𝑛 {

𝑐(𝑖 − 1, 𝑗),

𝑐(𝑖, 𝑗 − 1), 𝑐(𝑖 − 1, 𝑗 − 1)
} ,

‖(𝑖, 𝑥𝑖) − (𝑗, 𝑦𝑖)‖
} (25) 

𝐿𝑛𝑜𝑟𝑚 = 𝐿(𝑆1, 𝑆2)/𝑚𝑎𝑥(|𝑆1|, |𝑆2|) (26) 
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𝑑𝑀 = √
∑ (𝑥𝑖 − 𝑦𝑖)2

𝑖

σ2
 (27) 

2.3. Correlation Analysis 

Correlation analysis was performed to quantify the relationships between vibration 

metrics and various similarity metrics. The Spearman’s rank-order correlation was se-

lected for its robustness to outliers and its capacity to detect monotonic patterns regardless 

of linearity [72]. Spearman’s method internally ranks the data before calculating correla-

tion, reducing the influence of extreme values or non-normally distributed variables. Each 

vibration metric (e.g., oscillatory amplitude, peak frequency, or nominal RMS) was corre-

lated with each similarity metric (e.g., Euclidean distance, cosine similarity, cross-correla-

tion coefficient), yielding a grid of correlation coefficients ρ values. Along with the corre-

lation values, corresponding p-values were estimated to assess the significance of each 

monotonic relationship. While the primary interest lay in the magnitude of correlation, 

significance thresholds (e.g., α = 0.05) were applied to filter out results potentially attribut-

able to sampling variability. High positive correlations (e.g., ρ≈1) were interpreted as in-

dicating that the similarity metric rose in tandem with the vibration metric, while strongly 

negative correlations (e.g., ρ ≈ −1) suggested an inverse monotonic relationship. 

3. Results 

A comprehensive synthetic database was generated with 150 motion signal pairs 

(Figure 1), each consisting of a nominal and a perturbed movement. The nominal signals 

were produced by simulating smooth rise profiles with variable rise times randomly sam-

pled in the range of 0.5 to 1.5 s. To model realistic perturbations typically encountered in 

mechanical systems, each nominal trajectory was superimposed with random oscillatory 

components. These oscillations were characterized by: 

• A random number of superimposed sine waves (3 to 7 oscillations), 

• Frequency components ranging from 1 Hz to 50 Hz, 

• Amplitude values between 0.01 and 0.15, 

• Added white noise with an amplitude up to 0.02. 

 

Figure 1. Example of a signal pair: nominal (blue) and perturbed (orange). 

The Spearman’s rank-order correlation coefficient was calculated to assess the mon-

otonic relationship between the vibration metrics and the similarity metrics. The resulting 

correlation values are reported in Figures 2 and 3. 
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Figure 2. Correlation matrix: similarity metrics vs. vibrational metrics. The numbers corresponding 

to vibrational metrics stay for: (1) oscillation amplitude, (2) standard deviation, (3) root mean square, 

(4) peak value, (5) peak-to-peak value, (6) crest factor. The numbers corresponding to similarity 

metrics stay for: (1) mean squared error, (2) root mean squared error, (3) mean absolute error, (4) 

Pearson correlation coefficient, (5) Euclidean distance, (6) cosine similarity, (7) Jaccard index, (8) 

DTW distance, (9) normalized cross-correlation, (10) structural similarity index, (11) percentage of 

similar points, (12) Hausdorff distance, (13) Frechet distance, (14) normalized Levenshtein distance, 

(15) Mahalanobis distance. 

 

Figure 3. Correlation matrix: similarity metrics vs. vibrational metrics. The numbers corresponding 

to vibrational metrics stay for: (1) dominant amplitude, (2) frequency Band Width (BW95%), (3) 

kurtosis coefficient, (4) skewness measure, (5) mean vibration, (6) median vibration. The numbers 

corresponding to similarity metrics stay for: (1) mean squared error, (2) root mean squared error, 

(3) mean absolute error, (4) Pearson correlation coefficient, (5) Euclidean distance, (6) cosine simi-

larity, (7) Jaccard index, (8) DTW distance, (9) normalized cross-correlation, (10) structural similarity 

index, (11) percentage of similar points, (12) Hausdorff distance, (13) Frechet distance, (14) normal-

ized Levenshtein distance, (15) Mahalanobis distance. 

4. Discussion 

The present study explored whether generic signal-similarity indices—widely used 

in data-science contexts—can serve as reliable surrogates or complements to classical vi-

bration metrics when assessing motion quality in mechatronic systems. By superimposing 

realistic multi-frequency disturbances and broadband noise on 150 nominal motion pro-

files, and then computing a comprehensive battery of time-, frequency- and shape-based 
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indicators, we created a controlled yet diverse corpus that enabled rigorous pairwise cor-

relation analysis between the two families of metrics. 

The Spearman matrix (Figures 2 and 3) reveals two coherent clusters. Distance- or 

error-based similarity metrics—Mean-Squared Error (MSE), Root-MSE, Mean-Absolute 

Error, Euclidean, Dynamic Time Warping, Hausdorff and Fréchet distances—showed 

strong positive monotonic correlations (|ρ| ≥ 0.85) with amplitude-driven vibration de-

scriptors such as peak-to-peak, RMS, standard deviation and crest factor. These measures 

essentially quantify absolute deviations between perturbed and nominal trajectories; 

therefore, larger vibration amplitudes directly inflate the calculated “distance.” 

Conversely, shape-invariant similarity measures—Pearson’s r, cosine similarity and 

normalized cross-correlation—displayed strong negative correlations with the same vi-

bration descriptors, reflecting the expected drop in linear alignment when disturbances 

grow. The adapted one-dimensional Structural Similarity Index (SSIM) mirrored this be-

haviour, indicating that perceptual-quality criteria imported from imaging are sensitive 

to vibratory energy despite their origin in visual assessment. 

Metrics grounded in set or sequence comparisons (Jaccard, Levenshtein, percentage 

of similar points) produced medium correlations (|ρ| ≈ 0.4–0.6). Their discretisation or 

thresholding steps compress fine-grained amplitude information, explaining the attenua-

tion relative to purely numerical distances. Interestingly, frequency-domain vibration fea-

tures—dominant amplitude, BW95%—showed weaker associations with most similarity 

indices, except DTW, suggesting that time-warping is better suited to capture spectral 

spreading produced by multi-tone excitations. 

These findings indicate that several off-the-shelf similarity measures can act as proxy 

health indicators without explicit vibration modelling. For example, a rising Euclidean dis-

tance or a falling cosine similarity could trigger maintenance alarms in real-time trajec-

tory-tracking systems, bypassing the need for detailed spectral analysis. Moreover, be-

cause shape-based metrics are agnostic to operating frequency, they may generalise across 

machines with different actuation bandwidths—an advantage over narrowly tuned band-

pass monitors common in industry. 

The results also have implications for learning-based diagnostic frameworks: highly 

correlated metric pairs provide redundancy that can be pruned when designing feature 

vectors, whereas orthogonal pairs (e.g., DTW vs. crest factor) can enrich predictive mod-

els. Finally, the demonstrated sensitivity of SSIM and other imaging-derived indices sug-

gests fertile cross-pollination between computer-vision quality assessment and motion 

monitoring. 

Prior works have leveraged DTW for vibration classification in rotating machinery 

and used correlation coefficients for structural health monitoring, but direct, systematic 

benchmarking of a wide metric palette against canonical vibration descriptors has been 

scarce [73]. Our correlation-grid approach extends earlier case-specific studies by offering 

a quantitative map of metric inter-relationships over a synthetic yet statistically controlled 

data set, thereby filling a methodological gap highlighted in recent reviews of data-driven 

condition monitoring. 

Several limitations temper the generality of these conclusions. First, the signal data-

base was generated synthetically; although parameter ranges mimicked real trajectories 

[74], unmodelled nonlinearities, actuator saturations and sensor quantisation present in 

hardware were absent. Second, excitation frequencies were restricted to 1–50 Hz; high-

frequency resonances or impulsive shocks, common in high-speed machinery, may alter 

the metric landscape. Third, Spearman rank correlation captures monotonic but not nec-

essarily causal relationships, and no attempt was made to model computational latency 

or memory footprint—critical factors for embedded implementations. 
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Future work should validate these findings on experimental data acquired from in-

dustrial robots and precision stages, extend the analysis to time-frequency similarity 

measures (e.g., wavelet-packet-based distances), and explore adaptive thresholding 

schemes that normalise similarity metrics for varying operating conditions. Integrating 

the most informative metric subset into closed-loop controllers—potentially via light-

weight machine-learning surrogates—remains an open challenge. Finally, investigating 

how metric sensitivity scales with signal length and sampling rate will be essential for 

real-time deployment on resource-constrained edge devices. 

5. Conclusions 

This study quantitatively assessed the utility of 15 signal-similarity metrics as indi-

cators of motion discrepancy in the presence of vibratory disturbances and established 

their statistical relationship with 12 classical vibration descriptors using a large synthetic 

corpus of 150 motion-signal pairs. Strong coupling was found between error-based simi-

larity metrics and amplitude-driven vibration measures. I.e., metrics such as MSE, RMSE 

and Euclidean distance increased monotonically with RMS, peak and crest factor, achiev-

ing |ρ| ≥ 0.85. Inverse behaviour can be observed for alignment-based similarity metrics. 

I.e. Pearson correlation, cosine similarity and NCC decreased sharply as vibratory energy 

rose, providing complementary information to distance measures. Selective sensitivity ws 

measured in DTW to frequency-domain features. I.e., DTW captured bandwidth broad-

ening effects more effectively than other indices. Finally there is potential for redundancy 

reduction and feature selection. In fact, the correlation map identifies clusters of inter-

changeable metrics that can streamline diagnostic pipelines. 
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