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Abstract 

Structures are susceptible to external impacts under long-term service, resulting in vari-

ous types of damage. Online accurate assessment of the severity of damage is the basis for 

formulating subsequent maintenance and reinforcement plans. In this work, an online 

damage identification method based on the Adaptive Extended Kalman Filter (AEKF) is 

proposed. Initially, the vibration signals of a concrete-filled steel tubular (CFST) test struc-

ture subject to multiple lateral impacts are processed, and signals before and after damage 

inception are spliced to track damage evolution. Subsequently, the natural frequencies 

extracted from the signals before and after damage inception, and the amplitude of the 

damage itself are integrated into the state vector, to build a nonlinear state transfer and 

observation model and allow estimation of the dynamic flexural stiffness of the structure. 

To further improve the problem solution in the presence of signal losses caused by de-

tachment or breakage of the sensors when damage occurs, the reconstruction of missing 

signals is accomplished by way of the weighted Matrix Pencil (MP), which ensures the 

continuity and stability of the AEKF filtering process. By comparing the results with the 

real damage state, the proposed method is shown to effectively track the gradual reduc-

tion of the flexural stiffness, and verifies the feasibility of the proposed method to provide 

a reliable support for online monitoring and damage assessment. 

Keywords: concrete-filled Steel Tube (CFST); impact-induced damage; structural health 

monitoring (SHM); Adaptive Extended Kalman Filter (AEKF); Matrix Pencil (MP);  

dynamic flexural stiffness 

 

1. Introduction 

Concrete-filled steel tubes (CFSTs) combine the properties of steel tubes and con-

crete, to achieve high strength and durability. This type of composite structures is charac-

terized by an extremely high load-bearing capacity, and has widely used as major struc-

tural components in large-scale structures and infrastructures [1]. 

During their service life, CFST structures are susceptible to different external factors 

including loads (sometimes exceeding the design levels), and temperature variations, 

which can lead to a series of issues gradually worsening over time. Moreover, extreme 

conditions due to impacts or earthquakes [2,3], they can experience a damage of varying 
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severity, threatening the safety of the entire structure. In practice, damaged CFST struc-

tures are not able to attain anymore their ultimate failure level, though they still have a 

residual bearing capacity. There are several types of damage that may occur in the core 

concrete part, such as core debonding, crushing, or cracking, all of which leading to a 

significant reduction of the relevant flexural stiffness to affect the safe service. Therefore, 

an accurate assessment of the damage state is a prerequisite for determining appropriate 

repair measures, if needed. 

The Extended Kalman Filter (EKF) [4,5] has been extensively used for nonlinear state 

estimation in structural dynamics. It works by linearizing the system equations around 

the current estimate, and it recursively updates the state vector. However, its accuracy 

strongly depends on the correct specification of the process and measurement noise co-

variances, which are often unknown or time-varying in practice. To overcome this limita-

tion, the Adaptive Extended Kalman Filter (AEKF) [6,7] has been developed to adaptively 

updated the noise covariances during the filtering process, thus improving robustness to 

modeling uncertainties and measurement losses. 

In this study, impact tests were conducted on CFST beam–column specimens. Vibra-

tion signals were acquired before and after the impacts, and the signals were spliced arti-

ficially to simulate real service states. An AEKF, see e.g., [8] was then adopted for the real-

time damage identification. Finally, to also address potential data loss induced by struc-

tural damage, a weighted Matrix Pencil (MP) method was proposed for reconstructing 

possibly missing data. Through the comparison with the real damage states observed in 

the laboratory experiments, the effectiveness of the proposed approach is here validated. 

2. Experimental Modal Testing on CFST Specimens 

To understand the influence of damage on the vibration properties of CFST struc-

tures, a series of CFST specimens were fabricated and a modal testing program was con-

ducted before and after lateral impact tests [9]. 

2.1. Modal Testing Setup and Data Splicing 

Before and after the lateral impact tests, hammer-induced vibration tests were per-

formed on the instrumented CFST specimens. Each specimen was placed on rubber sup-

ports [10], and vibration responses in both the pristine and damaged states were recorded 

for subsequent analysis. Impacts were sequentially applied with a force hammer at fifteen 

predefined points marked on the top surface of the steel tube. In modal tests, 7 sensors 

were installed evenly spaced along the top surface of the specimen, and force and accel-

eration signals were sampled at 25 kHz. To minimize noise effects, each CFST specimen 

underwent five full repetitions of the entire impact sequence. The experimental setup is 

illustrated in Figure 1. 

  

(a) Before impact (b) After impact 

Figure 1. Modal testing setup. 

Subsequently, vibrations in 1 s, as obtained before and after the impact, were artifi-

cially spliced. At the interval between the intact and damaged signals, the frequency spec-

tra of the final 1000 data points of the baseline signals and the initial 1000 data points of 
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the damaged signals were merged to form a 2 s noise segment. Furthermore, by replicat-

ing the spectra of the final 1000 data points of the damaged signals, an additional 2 s noise 

segment was finally added at the end of the dataset. Therefore, the signal used for online 

update lasts 6 s. The artificially spliced vibration time history is depicted in Figure 2. 

It should be noted that, when damage occurs, the installed sensors may detach from 

the outer surface of the specimen or even break, leading to a loss of data. In these condi-

tions, reconstructing the missing data is essential to ensure the continuous operation of 

the online damage identification process. In this paper, an MP method was employed, see 

[11–13], and a standard Vandermonde matrix [14–17] was constructed to apply weighting 

to data regions which need a specific focus, that are the tail part of the time domain data 

and the mode emphasized in the frequency domain. 

 

(a) Acceleration 

  

(b) Acceleration before damage (c) Acceleration after damage 

Figure 2. Time history of a vibration signal. 

In a discrete time series, data xk can be represented as a linear superposition of r ex-

ponential modes, according to: 

𝑥𝑘 = ∑ 𝛼𝑖𝜆𝑖
𝑘

𝑟

𝑖=1

 (1) 

where λi is i-th mode, αi is the relevant amplitude, and r is the total number of considered 

modes. 

Subsequently, an L×M Hankel matrix H is constructed [18–20], with H1 and H2 being 

the submatrices obtained by deleting the last and first column of H, respectively: 

𝐻 = [

𝑥0 𝑥1 ⋯ 𝑥𝑀−1

𝑥1 𝑥2 ⋯ 𝑥𝑀

⋮ ⋮ ⋱ ⋮
𝑥𝐿−1 𝑥𝐿 ⋯ 𝑥𝐿+𝑀−2

] , 𝐻1 = [

𝑥0 𝑥1 ⋯ 𝑥𝑀−2

𝑥1 𝑥2 ⋯ 𝑥𝑀−1

⋮ ⋮ ⋱ ⋮
𝑥𝐿−1 𝑥𝐿 ⋯ 𝑥𝐿+𝑀−2

] , 𝐻2 = [

𝑥1 𝑥2 ⋯ 𝑥𝑀−1

𝑥2 𝑥3 ⋯ 𝑥𝑀

⋮ ⋮ ⋱ ⋮
𝑥𝐿 𝑥𝐿+1 ⋯ 𝑥𝐿+𝑀−2

] (2) 

At this stage, the MP is defined as: 
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Ρ(𝑧) =  𝐻2 − 𝑧𝐻1 (3) 

where z is a generalized eigenvalue of the matrix pencil H1 and H2. If there exists a non-

zero vector v that satisfies the following eigenproblem: 

(𝐻2 − 𝑧𝐻1)𝑣 = 0 (4) 

z turns out to be the mode of the signal. 

Once the modal parameter identification is completed, the following standard Van-

dermonde matrix is constructed: 

𝑉 =

[
 
 
 

𝜆1
0 𝜆2

0 ⋯ 𝜆𝑟
0

𝜆1
1 𝜆2

1 ⋯ 𝜆𝑟
1

⋮ ⋮ ⋱ ⋮
𝜆1

𝑁−1 𝜆2
𝑁−1 ⋯ 𝜆𝑟

𝑁−1]
 
 
 
 (5) 

In this matrix, each column corresponds to a modal parameter λi and each row corre-

sponds to a discrete k-th time point. The obtained Vandermonde matrix can be then em-

ployed to apply weighting to both the time domain and the frequency domain modal 

components. 

A comparison between the measured and reconstructed data is shown in Figure 3. 

From the graphs, it can be clearly observed that the reconstructed vibration signal is very 

similar to the measured data, both in the time and frequency domains, to verify the effec-

tiveness of the proposed weighed MP method. 

  

(a) Time domain (b) Frequency domain 

Figure 3. Comparison between the ground-truth and reconstructed signals. 

2.2. Adaptive Extended Kalman Filter 

Extended Kalman filtering (EKF) [21–23] has been extensively applied in real-time 

system state estimation, demonstrating excellent performance. In what follows, the dis-

crete EKF and AEKF for structural state estimation are briefly recalled. 

Several studies have been devoted to enhancing EKF techniques by adaptively esti-

mating unknown or time-varying system parameters. Among these approaches, maxi-

mum likelihood (ML)-based methods iteratively update the measurement noise covari-

ance using optimization techniques, such as sequential quadratic programming [24]. Ran-

dom-weighting based strategies, including adaptive random-weighted H-infinity filtering 

and random weighting Kalman filters, have been proposed to handle process and meas-

urement uncertainties under limited prior knowledge [25,26]. Windowing strategies, such 

as moving-window adaptive fitting H-infinity filters and moving horizon estimation-

based adaptive unscented Kalman filters, have been applied to capture temporal varia-

tions of noise statistics in nonlinear systems [27,28]. In addition, advanced nonlinear 

Gaussian filters, including the adaptive unscented Kalman filter (UKF) [29] and adaptive 
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cubature Kalman filter (CKF) [30], have been widely investigated in navigation, sensor 

fusion, and target tracking applications. These filters integrate online noise covariance es-

timation with nonlinear transformations of the state distribution, yielding improved esti-

mation accuracy in complex systems. 

Moving to the problem of interest here in relation to CFST structures, the flexural 

stiffness EI0 of each section can be determined as: 

(𝐸𝐼)0 = 𝐸s𝐼s + 𝐸c𝐼c (6) 

where subscripts s and c respectively refer to steel and concrete; E and I represent the 

Young’s modulus and the moment of inertia of each material. After lateral impacts, a sim-

plified model is adopted to allow for the general influence of concrete damage and steel-

concrete debonding on the same flexural stiffness of the CFST specimens. It is assumed 

that the elastic modulus Ec of concrete is affected by a uniform reduction, so that the stiff-

ness of the beam-columns can be determined as: 

(𝐸𝐼)d = 𝐸s𝐼s + 𝛼𝐸c𝐼c (7) 

where α is a factor ruling the aforementioned reduction of Ec due to damage. 

The equation of motion for a multi degrees of freedom (DOFs) CFST structure can be 

written as: 

𝑀𝑢(𝑡) + 𝐶𝑣(𝑡) + 𝐾𝑎(𝑡) = 𝐹(𝑡) (8) 

where M, C, and K are the mass, damping, and stiffness matrices, respectively; u, v and a 

are the displacement, velocity and acceleration vectors; F is the external force vector. In 

this study, the DOF of CFST specimens was set 63. 

In the time-discrete version of the EKF, the nonlinear state transition equation and 

the observation equation are: 

𝑥𝑘 = 𝕗(𝑥𝑘−1) + 𝑤𝑘 (9) 

𝕫𝑘 = ℍ𝑥𝑘 + 𝑣𝑘  (10) 

where xk is the state vector at time instant tk, which gathers displacement, velocity, accel-

eration. In this study, it also includes the damage indicator α and the three lowest natural 

frequencies fi of the specimen: 

𝑥𝑘 =

[
 
 
 
 
𝑢
𝑣
𝑎
𝛼
𝑓𝑖]

 
 
 
 

 (11) 

𝕫𝑘 is the observation vector at time tk, which lists the acceleration and the lowest three 

natural frequencies fi obtained from the online updating procedure. In Equation (11), 𝕗(·) 

is the state transition function, which is derived by discretizing the multi DOF equation 

of motion using the Newmark–β method. ℍ  denotes instead the observation matrix, 

which provides a map between the measurement and the state variables. In this study, ℍ 

is a Boolean matrix used to select the measured accelerations in 7 channels, and the natural 

frequencies. Finally, wk and vk are zero-mean Gaussian processes, with covariance matri-

ces Qk and Rk, respectively. 

In the initial stage of the EKF, the state vector is initialized as follows: 



Eng. Proc. 2025, 5, x FOR PEER REVIEW 6 of 11 
 

 

𝑥̂0|0 =

[
 
 
 
 
0
0
0
1
0]
 
 
 
 

 (12) 

In the prediction stage, the estimate of the predicted state is obtained as: 

𝑥̂𝑘|𝑘−1 = 𝕗(𝑥̂𝑘−1|𝑘−1) (13) 

At the same time, the Jacobian matrix is computed as follows: 

𝔽𝑘−1 =
𝜕𝕗

𝜕𝑥
|𝑥𝑘−1|𝑘−1

 (14) 

Therefore, the predicted error covariance is given by: 

𝑃𝑘|𝑘−1 = 𝔽𝑘−1𝑃𝑘−1|𝑘−1𝔽𝑘−1
𝑇 + 𝑄𝑘−1 (15) 

The innovation, defined as the difference between the measurement and the current 

prediction, is expressed in the following form: 

𝑦𝑘 = 𝕫𝑘 − ℍ𝑥̂𝑘|𝑘−1 (16) 

The innovation covariance and the Kalman gain are defined as: 

𝑆𝑘 = ℍ𝑃𝑘|𝑘−1ℍ
𝑇 + 𝑅𝑘 (17) 

𝐾𝑘 = 𝑃𝑘|𝑘−1ℍ
𝑇𝑆𝑘

−1 (18) 

and the updated state estimate and corresponding error covariance are given by the fol-

lowing expressions: 

𝑥̂𝑘|𝑘 = 𝑥̂𝑘|𝑘−1 + 𝐾𝑘𝑦𝑘 (19) 

𝑃𝑘|𝑘 = (1 − 𝐾𝑘ℍ)𝑃𝑘|𝑘−1 (20) 

Practical applications of the EKF still have some limitations. While the measurement 

noise covariance R can typically be determined through repeated experimentation, an in-

correctly chosen process noise covariance Q can introduce substantial errors into the struc-

tural state estimation. Hence, an accurate selection of Q is critical to ensure a reliable 

online evaluation of structural state via the EKF. An adaptive, innovation-based method 

[31,32] for the online estimation of Q is here adopted, according to: 

𝑄𝑘 = (1 − 𝛽𝑞,𝑘−1)𝑄𝑘−1 + 𝛽𝑞,𝑘−1𝐾𝑘𝑦𝑘𝑦𝑘
𝑇𝐾𝑘

𝑇 (21) 

with the initial value of βq set to 0.25. 

A preliminary trial-and-error process allowed to observe that the selection of βq in-

fluences the online updating performance. Therefore, a real-time updating method for βq 

was also defined as follows: 

𝛽𝑞,𝑘 = 𝛽𝑞,𝑘−1 × (1 + tanh (
𝑦𝑘

𝑇𝑦𝑘

trace(𝑆𝑘)
− 1)) (22) 

to provide βq,k through multiplication by a scaling factor. This latter factor is computed as 

the ratio of the squared norm of the innovation vector and the trace of the innovation 

covariance, and then mapped to (−1, 1) through the hyperbolic tangent function. If this 

ratio is larger than 1, the scaling factor becomes greater than 1, indicating that the system 

uncertainty is underestimated; conversely, if the ratio is less than 1, the estimated uncer-

tainty is too high. 
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3. Results 

The accuracy of the proposed AEKF method for estimating the reduction of the elas-

tic modulus of the core concrete in CFST beam–column specimens subjected to impacts is 

now investigated. Simultaneously, data loss scenarios, caused by sensor detachment or 

breakage when damage occurs, were also simulated. The proposed weighted MP method 

was then applied for the online reconstruction of the missing data, and these recon-

structed data were subsequently used to continue the AEKF update process. 

3.1. AEKF Update Results Without Data Loss 

In this test case, the initial values of state vector, error covariance matrix, process 

noise covariance matrix Q, and observation noise covariance matrix R are defined as fol-

lows: 

𝑥̂0|0 =

[
 
 
 
 
0
0
0
1
0]
 
 
 
 

193×1

 (22) 

𝑃0|0 = diag(1 × 10−12, 1 × 10−12, 1 × 10−12, 1 × 10−12, 1 × 10−12)193×193 (23) 

𝑄0 = diag(1 × 10−1, 1 × 10−1, 1 × 10−1, 1 × 10−1, 1 × 10−1)193×193 (24) 

𝑅0 = diag(1 × 10−1, 1 × 10−1)10×10 (25) 

The real-time results of the AEKF are presented in Figure 4 in terms of the time evo-

lution of the damage factor α. From the plot it clearly emerges that the proposed AEKF 

method promptly detects the damage, and finally converges to the value of 0.637 in no 

more than 2 s. The said damage value is close to the target one of 0.634, with an error of 

only 0.47% to ascertain the effectiveness of the proposed approach. 

 

Figure 4. AEKF results: time evolution of the damage factor α with no data loss. 

The time history of the acceleration is next shown in Figure 5. The AEKF method 

shows outstanding performance in such an online acceleration prediction and further 

prove the effectiveness of the method. 
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(a) Time domain (b) Scatter comparison 

Figure 5. AEKF results: time evolution of the acceleration signal with no data loss. 

3.2. AEKF Update Results with Data Loss 

During the service life of the structure, when damage occurs, sensors may detach or 

break, leading to data loss. Under such circumstances, it is necessary to reconstruct the 

missing data online and in real-time. In this section, missing damage data are artificially 

induced and reconstructed using the proposed weighted MP method; after that stage, the 

AEKF is employed to estimate the damage state. As illustrated in Figure 6, for data recon-

structed by the weighted MP method, the proposed AEKF approach still promptly cap-

tures the damage features and get online estimation of the elastic modulus reduction with 

high accuracy. 

 

Figure 6. AEKF results: time evolution of the damage factor α in the presence of data. 

The online acceleration estimation of the reconstructed data is illustrated in Figure 7, 

which shows that the AEKF method can estimate the acceleration still with high accuracy. 

This testifies that the structural state can be captured in real-time by updating the struc-

tural parameters. 
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(a) Time domain (b) Scatter comparison 

Figure 7. AEKF results: time evolution of the acceleration signal in the presence of data loss. 

4. Conclusions 

In this study, to obtain an online, real-time estimation of structural damage states, an 

online damage identification method based on the AEKF has been proposed. Simultane-

ously, to solve the problem of data loss due to damage, a weighted MP method has been 

proposed to reconstruct the missing data. Based on the obtained results, conclusions can 

be drawn as follows. 

1. By adaptively updating Q and the scale factor βq, the proposed method avoids the 

estimation fluctuation problem caused by time invariant Q like in the traditional EKF, 

so that the filter process remains stable and accurate at varying damage state. 

2. The study incorporated the lowest 3 natural frequencies and the damage parameter 

α into the state vector, and updated them in the nonlinear state transfer and observa-

tion model. It can therefore automatically track a gradual degradation process of the 

structural flexural stiffness, if any. 

3. When acceleration data are missing, the weighted MP method can be used and 

weights were applied to the time domain and the target mode to complete data re-

construction. The reconstructed data were shown to be highly consistent with the 

real measurements in both time and frequency domains, and the subsequent AEKF 

process can output the effective stiffness reduction in close agreement with the true 

value. The proposed methodology has been shown to lead to high accuracy and 

prompt response to the changing state, as well as tolerance to sensor failures in actual 

operational conditions. 

In future research, the focus will be on extending the proposed AEKF-based moni-

toring strategy to other structural systems and loading conditions. Furthermore, applica-

tions to large-scale structures with multi-sensor fusion and real operational uncertainty 

will be also explored. Finally, the combination of adaptive filtering with machine learning-

based uncertainty evaluation methods will be pursued to enhance structural health mon-

itoring applications. 
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