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Abstract 

Wearable sensors enable continuous monitoring of physiological signals, offering oppor-

tunities for the early detection of metabolic dysfunction. In this study, we propose the use 

of cross-fuzzy entropy (X-FuzzEn) to quantify the dynamic coupling between wearable-

derived time series, i.e., heart rate (HR), electrodermal activity (EDA), and body accelera-

tion (ACC), across four clinically relevant glucose ranges. Analysis revealed differences 

in signal coordination across both metabolic and demographic groups. Prediabetic indi-

viduals exhibited elevated X-FuzzEn between HR and EDA during hypoglycemia com-

pared to normoglycemic individuals, indicating potential autonomic dysregulation. 

Males showed lower X-FuzzEn compared to females, indicating more coherent and adap-

tive autonomic regulation. A similar pattern was observed in HR–ACC coupling, with 

lower X-FuzzEn in males during hypoglycemia. These findings suggest that cross-fuzzy 

entropy may serve as a sensitive, non-invasive biomarker of physiological resilience and 

autonomic stability in response to metabolic stress. 
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1. Introduction 

Wearable sensors such as smartwatches and fitness trackers have gained popularity 

over recent years, allowing for continuous non-invasive monitoring of physiological sig-

nals in daily life [1]. These devices enable the tracking and collection of data such as heart 

rate, steps, calories burned, and sleep duration over extended periods. This continuous 

monitoring provides granular, real-time insights into physiological processes that are dif-

ficult to capture during intermittent clinical visits, enabling the derivation of digital bi-

omarkers to assess users’ metabolic dynamics [2,3]. 

Physiological systems are highly interconnected—for instance, the cardiovascular 

and respiratory systems exhibit strong bidirectional influences, and neural control tightly 

regulates muscular activity [4]. Therefore, investigating coupling patterns between mul-

tiple physiological signals can uncover latent states and regulatory mechanisms that may 

not be apparent in individual signals alone. 

Despite this potential, the application of signal coupling analysis to multimodal 

wearable data for the derivation of non-invasive biomarkers remains limited. Most 
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current analytics focus primarily on deriving features from individual physiological sig-

nals, overlooking the dynamic interaction between signals. In particular, in the domain of 

deriving biomarkers for glycemic state, prior work has predominantly focused on deriv-

ing time and frequency domain features [5,6]. Although a few studies have explored non-

linear features, they typically rely on a single source signal, thereby overlooking the cou-

pled dynamics between multiple physiological signals [7,8]. 

In this study, we propose the use of an entropy-based measure—cross-fuzzy entropy 

to quantify the dynamic coupling between wearable-derived time series of physiological 

signals, including heart rate (HR), electrodermal activity (EDA), and body acceleration 

(ACC). 

2. Materials and Methods 

2.1. Dataset 

We utilized the BIG IDEAs Lab Glycemic Variability and Wearable Device Data da-

taset for this study [9]. The dataset includes 16 participants (9 females and 7 males) aged 

35–65 years, with either high-normal HbA1c levels (5.2–5.6%) or prediabetic HbA1c levels 

(5.7–6.4%). Exclusion criteria included any history of chronic obstructive pulmonary dis-

ease, cardiovascular disease, cancer, or chronic kidney disease. 

Data was collected over 8–10 consecutive days. Glucose levels were recorded every 

5 min using Dexcom G6 continuous glucose monitors (CGMs). Simultaneous physiologi-

cal data were continuously recorded using Empatica E4 wristbands, capturing blood vol-

ume pulse (BVP) at 64 Hz, tri-axial acceleration (tri-ACC) at 32 Hz, electrodermal activity 

(EDA) at 4 Hz, and skin temperature (TEMP) at 4 Hz. BVP was used to derive HR at 1 Hz. 

2.2. Data Pre-Processing 

As the first step, tri-axial accelerometry (tri_ACC) data were used to compute the 

vector magnitude of acceleration (ACC). The next step involved outlier removal and fil-

tering. HR and TEMP signals were filtered in the time domain by removing physiologi-

cally infeasible values. EDA, ACC, and BVP signals were filtered in the frequency domain 

using the following cut-off frequencies: EDA—low-pass filter at 0.5 Hz; ACC—band-pass 

filter between 0.29 and 10 Hz; BVP—band-pass filter between 0.5 and 5 Hz. As cross-en-

tropy computation requires equal signal lengths, all signals were resampled to 1 Hz to 

match the lowest sampling resolution. The resampled signals were then segmented into 

5-min epochs aligned with available glucose measurement timestamps. Epochs contain-

ing over 50% missing data in any signal were excluded, and missing values were imputed. 

2.3. Cross-Fuzzy Entropy 

Fuzzy entropy (FuzzyEn) is a nonlinear metric designed to quantify the complexity 

or irregularity within a univariate time series by assessing the degree of pattern similarity 

using fuzzy set theory. Unlike traditional entropy measures that rely on binary thresholds 

to determine whether patterns are similar or not, FuzzyEn employs a fuzzy membership 

function that assigns a gradual similarity value between vectors, enhancing robustness 

against noise and small signal variations [10]. Cross-fuzzy entropy (X-FuzzEn) is an ex-

tension of FuzzyEn aimed at quantifying the degree of synchrony or coupling between 

two univariate time series. By comparing the similarity of embedded vector patterns from 

two signals, X-FuzzEn evaluates how synchronous or coordinated their temporal dynam-

ics are [11]. Both FuzzyEn and X-FuzzEn utilize the concept of phase-space reconstruction 

through embedding, where the time series is mapped into vectors of length m, known as 

the embedding dimension. This embedding captures temporal structures and dependen-

cies within the data: For m = 1, the embedding reduces to individual scalar points, 
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reflecting pointwise comparisons. For m = 2, the embedding captures temporal evolution 

by forming vectors of two consecutive points, thus incorporating short-term temporal pat-

terns. 

In this study, two cross-fuzzy entropy variants (X-FuzzEn1 with 𝑚 = 1, and X-

FuzzEn2 with 𝑚 = 2) were calculated for all combinations of signal pairs (i.e., HR and EDA, 

HR and ACC, ACC and TEMP, among others). EntropyHub v2.0 [12] was used for the 

cross-entropy computations, with all other parameters kept at their default values. 

2.4. Comparison of X-FuzzEn Across Glucose Ranges 

We compared X-FuzzEn1 and X-FuzzEn2 across four clinically relevant glucose 

ranges: hypoglycemia (<70 mg/dL), normoglycemia (70–140 mg/dL), elevated normogly-

cemia (141–180 mg/dL), and hyperglycemia (>180 mg/dL). 

These ranges were used to assess how physiological coupling, as measured by cross-

fuzzy entropy, varies with glucose levels. Entropy differences were analyzed across two 

categories: (1) metabolic status, based on HbA1c levels—categorized as high-normal (HN, 

5.2–5.6%) and prediabetic (PD, 5.7–6.4%)—and (2) biological sex, categorized as male (M) 

or female (F). 

3. Results 

As outlined in Section 2.4, we computed X-FuzzEn for all available combinations of 

signal pairs. In this section, we focus on a selection of noteworthy results—particularly 

those with potential as non-invasive biomarkers for distinguishing metabolic and demo-

graphic groups. 

3.1. X-FuzzEn Between HR and EDA 

The cross-entropy results indicate prediabetic individuals exhibit elevated X-FuzzEn 

between HR and EDA in the hypoglycemia range compared to individuals with high-

normal glucose levels (Figure 1). For X-FuzzEn1, the median cross-entropy for the PD 

group in the hypoglycemia range was 0.13, with the IQR between 0.09 and 0.17. In contrast, 

the HN group had a median of 0.05 and an IQR between 0.02–0.11. For X-FuzzEn2, the PD 

group showed a higher median value of 0.27, and an interquartile range (IQR) from 0.19 

to 0.34, in the hypoglycemia range. The median for HN individuals falls at 0.10, with the 

IQR between 0.04–0.23. Across the glucose ranges of normoglycemia (70–140 mg/dL), el-

evated normoglycemia (141–180 mg/dL), and hyperglycemia (>180 mg/dL), both groups 

show similar distributions of cross-entropy values, with no distinct elevation in either 

group. These findings suggest that individuals with prediabetes exhibit elevated HR-EDA 

cross-entropy specifically in the hypoglycemic range, a pattern not observed in other glu-

cose states. This may reflect disrupted autonomic integration or early-stage sympathetic 

nervous system dysfunction, potentially serving as an early physiological marker of pre-

diabetic dysregulation. 
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Figure 1. Comparison of X-FuzzEn between HR and EDA between prediabetic (PD) and high-nor-

mal (HN) individuals across four glucose ranges. 

A similar divergence was observed between sex groups (Figure 2). In the hypoglyce-

mia range, male subjects exhibited lower HR–EDA cross-entropy compared to female sub-

jects. For X-FuzzEn1, the median cross-entropy for males is 0.02, with a narrow IQR be-

tween 0.01 and 0.04. In contrast, females had a median of 0.06, with a broader IQR extend-

ing up from 0.02–0.12. Similarly, in X-FuzzEn2, the male median remains at 0.04, while 

the female median rises to 0.13, with the IQR spanning from 0.05 to above 0.24. Across the 

normoglycemia, elevated normoglycemia, and hyperglycemia ranges, male and female 

HR–EDA cross-entropy values appear more aligned, with males consistently showing 

slightly lower or equivalent medians and IQRs. These patterns suggest that males may 

maintain more stable autonomic regulation in response to hypoglycemia, as reflected in 

the lower entropy between HR and EDA. 
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Figure 2. Comparison of X-FuzzEn between HR and EDA between males (M) and females (F) across 

four glucose ranges. 

3.2. X-FuzzEn Between HR and ACC 

In the HR–ACC cross-entropy analysis, male subjects exhibited lower X-FuzzEn val-

ues during hypoglycemia compared to female subjects (Figure 3). For X-FuzzEn1, males 

show a median cross-entropy of 0.19, with an IQR between 0.03 to 0.46, whereas females 

have a median of 0.63, with a broader IQR of 0.16–1.04. For X-FuzzEn2, the male median 

is at 0.11, with IQR ranging from 0.04 to 0.26, while the female median falls at 0.50, with 

the IQR ranging from 0.21 to 0.77. Across normoglycemia, elevated normoglycemia, and 

hyperglycemia ranges, the entropy distributions between males and females become more 

comparable, though males still tend to exhibit slightly lower or equivalent values. The 

lower HR–ACC entropy in males during hypoglycemia may reflect tighter and more syn-

chronized integration between cardiac and motor systems, suggesting more efficient car-

diac-motor coupling under low-glucose conditions. 
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Figure 3. Comparison of X-FuzzEn between HR and ACC between males (M) and females (F) across 

four glucose ranges. 

In contrast, the cross-entropy analysis for HR–ACC coupling did not reveal any sig-

nificant differences between the HN and PD groups across any of the four glucose ranges 

(Figure 4). 

 

Figure 4. Comparison of X-FuzzEn between HR and ACC between prediabetic (PD) and high-nor-

mal (HN) individuals across four glucose ranges. 
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4. Discussion 

Results indicate that cross-fuzzy entropy (X-FuzzEn) captures distinct patterns of 

physiological signal coordination across both metabolic states and demographic groups. 

These distinctions were most pronounced under metabolic stress, indicating that lower X-

FuzzEn appears to indicate efficient physiological coordination, while elevated entropy 

may signal early dysregulation, particularly in prediabetic individuals. 

Our findings align with prior research examining physiological signals in relation to 

gender [13,14]. For example, previous studies have reported gender differences in emo-

tional processing, using EEG-derived features to classify gender based on responses to 

emotional stimuli [13]. In our study, cross-fuzzy entropy revealed lower HR–EDA and 

HR–ACC coupling in male subjects compared to females during hypoglycemia. Although 

these studies focus on different physiological domains, both highlight the utility of en-

tropy-based metrics for capturing gender-specific patterns. 

The dataset used in this study comprises data from only 16 participants, which limits 

the generalizability of the findings. Additionally, the participants were recruited from a 

relatively homogeneous population, and demographic diversity was limited. This may 

restrict the applicability of the results to broader populations. 

To address these limitations, future work should focus on applying X-FuzzEn analy-

sis to larger, more diverse datasets spanning a wider range of metabolic states, ages, and 

lifestyles. Moreover, validating the findings across different wearable device platforms 

would strengthen their generalizability. Finally, investigating whether X-FuzzEn can 

serve as an early-warning biomarker in real-time monitoring systems for prediabetes or 

other metabolic disorders would be an important step toward clinical translation. 

In conclusion, this study highlights a novel application of entropy-based metrics in 

wearable sensing, offering new insights into the complexity of physiological signal inter-

actions and their potential for real-time health monitoring. 
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