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Abstract 

Underground coal mining is considered to be a highly dangerous activity and has been 

responsible for large amounts of accidents causing the death of many mine workers. One 

of the factors responsible for the fatal aspect of underground coal mining is the presence 

and accumulation of toxic gases during underground mining operations. This paper fo-

cused its investigation specifically on coal mine methane (CMM) which is released as a 

result of the extraction of coal and the disturbance inflicted to surrounding rocks’ for-

mation during deep mining operations. Methane is considered a highly dangerous gas as 

it holds the capacity to cause explosions due to its high inflammable nature. It also can 

displace oxygen which eventually leads to asphyxiation. This research was based on the 

use of machine learning models to successfully predict dangerous concentrations of me-

thane over the authorized threshold. Those predictions were made from a dataset con-

taining information on the temperature, airflow, humidity, pressure and methane concen-

tration at an underground coal mine. The temperature, airflow, humidity and pressure 

measurements were recorded by a series of sensors namely anemometers and component 

sensors THP2/93. Three machine learning classification models were implemented and 

compared with the objective towards finding the best model to predict and detect danger-

ous level of coal mine methane. The models that were investigated include: Naïve-Bayes, 

logistic regression and artificial neural networks (ANN). The paper concluded with an 

engineering decision matrix that illustrated the precision of these models towards pre-

dicting and detecting dangerous level of methane concentration in underground mines. 

Furthermore, recommendations for capacity improvement towards successfully predict-

ing and detecting dangerous level of coal mine methane from an artificial intelligence’s 

perspective were provided. 
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1. Introduction 

There are three types of mining operations to extract ores. These types of operations 

are notably open surface mining, deep mining and sea water mining. As for deep mining 

or also known as underground mining operations, the most common technique used is 

Academic Editor(s): Name 

Published: date 

Citation: Mooroogen, R.; Ayomoh, 

M.K. Use of Machine Learning to 

Detect Dangerous Level of Coal 

Mine Methane (CMM) Concentra-

tions During Underground Mining 

Operations. Eng. Proc. 2025, volume 

number, x. 

https://doi.org/10.3390/xxxxx 

Copyright: © 2025 by the authors. 

Submitted for possible open access 

publication under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Eng. Proc. 2025, x, x FOR PEER REVIEW 2 of 12 
 

 

longwall mining because it is considered as the safest and most productive technique [1]. 

However, past research clearly demonstrates that this specific technique of extraction re-

leases high and dangerous concentrations of methane, also referred as coal mine methane 

(CMM), in the surrounding underground environment [2]. CMM owing to its inflamma-

ble nature, has been responsible for a large number of lethal explosions around the world. 

A document signed by the United Nations detailed those fatal accidents as followed: 214 

deaths on the 14 February 2005 in the Sunjlawan mine of China, 108 deaths on the 19 

March 2007 in Ulyanovskaya mine of Russia, 80 deaths on the 19 November 2007 in 

Zasyadko mine of Ukraine, 43 deaths on the 20 September 2006 in Lenina mine of Kazakh-

stan, 29 fatalities in Upper Big Branch, West Virginia, United states of America on the 5 

April 2010 and 12 deaths also in West Virginia, most precisely in Sago on the 14 February 

2005 [3]. As result, CMM’s explosions are considered amongst the most lethal accidents 

when it comes to underground or deep mining operations, hindering the safety and 

productivity of the mining’s environment as well as its industry. One way to ensure that 

the concentration of coal mine methane does not exceed the safe and permissible thresh-

old is the use of ventilation. According to a study performed on the safety of longwall 

mining, researchers supported the use of ventilation as the most effective methods for the 

control of gases with a special focus of coal mine methane, known to be present and re-

leased in large volumes during longwall mining’s activities [4]. 

To achieve optimal ventilation in underground mining regions, it is important to lo-

calize the regions that present high concentrations of CMM. This is achieved by the im-

plementation of a sensing and metrification strategy. Since the concentration of CMM is 

largely attributed to its capacity of accumulation and dispersion which itself is dependent 

on physical parameters like temperature, humidity, pressure and airflow, sensors are 

placed in various locations of underground mines to collect data which contributes to bet-

ter management of CMM through optimal ventilation usage. The type of sensors com-

monly used are normally threshold triggering and continuous monitoring. Threshold trig-

gering sensors normally emit an output whenever the measured parameter exceeds the 

permissible threshold. On the other side, continuous monitoring sensors collect real-time 

data over a period of time. The use of triggering sensors in the management of CMM in 

underground mining conditions comes with its own set of challenges and disadvantages 

that compromise the safety of the mines as well as its productivity. Triggering sensors 

emit an alarm only when the maximum permissible CMM threshold has been exceeded. 

This type of system only allows for reactive measures which leave little to no time to re-

spond efficiently to a hazardous situation. This can lead to a fatal occurrence in case of 

late activations of the sensors. Past studies demonstrate that under deep mining condi-

tions, the response time of a sensor varies between 210 and 257s while the recovery time 

sits between 142 to 241 s [5]. These data clearly show that it takes too much time for a 

triggering sensor to pick up high concentrations of CMM, hence increasing the risk of 

explosions in underground mines. A study focused on the influence of environmental fac-

tors like humidity alongside pressure, concluded that those natural factors interfere with 

the capacity of these sensors by introducing an element of delay leading to late alarms [6]. 

As a result, the reactive cognition aspect of the methane management system is heavily 

compromised and highly hazardous and dangerous situations are not dealt appropriately, 

leading to explosions. To improve the detection of CMM, artificial intelligence models are 

employed to predict dangerous concentrations of CMM with a high level of precision and 

accuracy. This improves the cognition attribute of underground CMM management by 

replacing reactive decisions with proactive ones. Tutak, Krenicky, Pirnik, Brodny and 

Grebski proposed a Multi-Layer Perceptron Neural Network for predictions of CMM in 

underground coal mining [7]. This research was focused on longwall mining and con-

cluded that it was possible to generate forecasts of CMM with a high level of accuracy. 
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According this paper, predictions made within a forecast window ranging from 5 to 60 

min were considered as acceptable. A different study performed in China, most precisely 

at the Buertai Coal Mine, proposed a prediction model for methane concentration, namely 

an Improved Black Kite Algorithm (BKA) working together with an Informer Bidirec-

tional Long Short Term Memory algorithm [8]. This proposed algorithm made use of sev-

eral features which includes historical data on methane concentrations, temperature as 

well as wind speed and results obtained indicated a high predictive accuracy of the model 

in terms of convergence and speed as well as an elevated degree of robustness. Nie et al. 

[9] studied the characteristics of the surrounding mining environment with the objective 

of better understanding the manner in which CMM spreads in underground mines. This 

allowed the researchers to present a methane prediction model based on the Gaussian 

plume model, genetic algorithms and BP neural networks (Back Propagation Neural Net-

work). This model presented a high level of accuracy in monitoring the level of CMM and 

is considered reliable due to its ability to continuously train on daily real-time data. An-

other machine learning technique that was used successfully in methane prediction is the 

support vector machine algorithm [10]. This research focused on building a multi-sensor 

prediction model for methane predictions by combining methodologies from information 

fusion alongside support vector machines. To achieve a high predictive accuracy of coal 

mine methane, it is common and highly advisable to use a palette of features as demon-

strated by Zhiqiang Luo et al. [11] in building their eXtreme Gradient Boosting algorithm 

(XG Boost). For this model, the researchers chose to make sure of natural parameters like 

temperature and past historical data of methane concentrations to train and test their ma-

chine learning models. Results obtained indicated that the tested models had faster train-

ing speeds compared to existing ones and a lower percentage of prediction errors. 

From the above, it is clear that a robust artificial intelligent mode with a high degree 

of accuracy can successfully predict dangerous concentrations of methane, enhancing the 

safety of underground mining operations. This paper analyzed the computational ability 

and reliability of three machine learning classification models that successfully predict 

and classify dangerous concentrations of coal mine methane in underground mines. 

Those three machine learning classification models are the Naïve-Bayes, Logistic Regres-

sion and Artificial Neural Network. The aim of this paper is to perform a comparative 

analysis of these three algorithms in regards to their capacity of predicting dangerous 

level of concentrations of CMM with a high degree of accuracy. This paper, with the re-

sults obtained, will lay the foundation to build improved machine learning algorithms 

with higher degree of accuracy in regards to the prediction of dangerous concentrations 

of CMM. 

2. Research Methodology 

The research methodology is divided into two parts: the first part being preparing 

the sensing dataset in order to be used as input for the classification models and the sec-

ond part being the design and implementation of the three above discussed machine 

learning classification models. 

2.1. Description of the Sensing Data and Machine Learning Algorithms 

This study investigated and compared the use of three machine learning classifica-

tion models, namely Naïve Bayes, Logistic Regression and Artificial Neural Network to 

predict and classify efficiently concentrations of methane into safe and unsafe categories. 

These predictions were made based on data from sensing data which are past historical 

concentrations of methane, temperature, humidity, airflow and pressure. These data were 

obtained from 28 different sensors placed at different locations in the underground mine 

[12]. The underground mine that was used for this study is located in the Upper Silesian 
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coal basin, in the region of Voivodeship in Poland. The data was recorded every 1 s and 

two groups of data were recorded with the first one focusing on climatic parameters like 

temperature and the second group focusing on the activities focusing on the cutter loader 

operation. For the purpose of this research paper, only the climatic conditions that are 

temperature, pressure, humidity and airflow were considered as input to the different 

machine learning models. This is in line with the philosophy of the research to test the 

predictability of those machine learning models from a pure climatic and environmental 

perspective before introducing other input that relate to the human’s activities performed 

in mines. The following section depicts the data handling procedure of this research as 

follows: 

1. Cleaning the dataset to ensure that there are no missing values and remove any du-

plicated readings. 

2. Select the required features that will serve as input to the machine learning classifi-

cation models. Those features are pressure, temperature, humidity and airflow. 

3. Select the required methane meters and associated historical data as output. 

4. Based on a chosen threshold (e.g., 1.0), classify methane’s concentration as safe and 

unsafe. 

5. Perform checks on different portion of dataset to check number of safe and unsafe 

cases in each data clusters. 

6. Use the data as input to three different machine learning classification models. Those 

models are the Naïve-Bayes, Logistic Regression and Artificial Neural Networks. 

7. Print out the classification report to display the values for the following statistical 

parameters: 

The following section addresses the development of the three machine learning clas-

sification algorithms that are deployed for this research. 

2.1.1. Naïve-Bayes Machine Learning Classification Model 

The Naïve-Bayes Classification Model is used as a first baseline model for the pur-

pose of this research and is based on the assumption of attribute independence. This 

means that all the features or attributes are not related to each other. Naïve Bayes is built 

from the Bayes Theorem as shown below: 

 

 

The Bayes theorem above consists of two parameters which are C and X. C represents 

the class that needs to be predicted while X represents the different features that are used 

as inputs. The P(C|X) indicates the probability of happening of event C given X has hap-

pened. In order to form the Naïve Bayes equation, it is assumed that each features of x are 

independent of each other, giving the following equation: 

 

 

For the purpose of this study, the x parameter will relate to the climatic conditions of 

the underground mine which are temperature, pressure, airflow and humidity. The C will 

relate to the different categories of CMM’s concentrations in underground mines. Two 

categories will be used for this paper and they are Safe and Unsafe. The purpose of the 

Naïve-Bayes classification algorithm will be to use the different input parameters such as 

temperature, pressure, humidity alongside airflow to predict and classify CMM’s concen-

trations as safe or unsafe. 
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Figure 1 illustrates the algorithm that was built to implement the Naïve-Bayes algo-

rithm in predicting and classifying the concentrations of CMM as safe or unsafe during 

underground mining operations. 

 

Figure 1. Naïve-Bayes Classification Algorithm. 

2.1.2. Logistic Regression Machine Learning Classification Model 

The second model that was implemented is known as the Logistic Regression Classi-

fication Model. This model is by nature a statistical classification model which outputs a 

probability that sits between zero and one. Compared to the Naïve-Bayes, this model does 

not require the assumption of independence between the input features hence making it 

a more robust alternative compared to the previous model. 

Figure 2 illustrates the algorithm that was built to implement the Logistic Regression 

algorithm in predicting and classifying the concentrations of CMM as safe or unsafe dur-

ing underground mining operations. 
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Figure 2. Logistic Regression Classification Model. 

2.1.3. Artificial Neural Network (ANN) Classification Model 

The third model that was implemented is known as the Artificial Neural Network 

(ANN) Classification Model. The latter was chosen as it has the inherent capacity to learn 

and simulate models where relationships between input’s structures are by nature non-

linear, hence raising the level of complexity of predictions and by default, being a better 

alternative than the logistic regression model. It is also an upgrade over the Naïve-Bayes 

as it does not assume independence of features. 

Figures 3 and 4 illustrate the algorithm that was built to implement the Artificial 

Neural Network algorithm in predicting and classifying the concentrations of CMM as 

safe or unsafe during underground mining operations. 
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Figure 3. Artificial Neural Network Algorithm (Part 1 of 2). 

 

Figure 3. Artificial Neural Network Algorithm (Part 2 of 2). 

3. Results and Discussions 

This section summarizes the results obtained after deploying the three classification 

machine learning models (Naïve Bayes, Logistic Regression and Artificial Neural Net-

work). 

The Naïve Bayes Model was deployed and simulations were performed on the da-

taset consisting of 9,197,561 safe events indicating a safe level of CMM’s concentration and 

2369 unsafe events indicating a dangerous level of CMM’s concentration. Simulations 

were performed on different sample sizes in the following combinations: 1,000,000, 
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2,000,000, 3,000,000, 4,000,000, 5,000,000, 6,000,000, 7,000,000, 8,000,000 and 9,199,930. The 

detailed results for those simulations is illustrated as shown below in both Figures 4 and 

5 respectively: 

 

Figure 4. Simulation Results for Safe Cases using Naïve Bayes. 

 

Figure 5. Simulation Results for Unsafe Cases using Naïve Bayes. 

In the second part of this section, the Logistic Regression Model was deployed and 

simulations were performed on the dataset consisting of 9,197,561 safe events indicating 

a safe level of CMM’s concentration and 2369 unsafe events indicating a dangerous level 

of CMM’s concentration. Simulations were performed on different sample sizes in the fol-

lowing combinations: 1,000,000, 2,000,000, 3,000,000, 4,000,000, 5,000,000, 6,000,000, 

7,000,000, 8,000,000 and 9,199,930. The detailed results for those simulations is illustrated 

as shown below in Figures 6 and 7 respectively: 

Total Number 

of Simulations

Number of 

Safe Cases Precision Recall f1-score

1000000 999812 1 1 1

2000000 1999798 1 1 1

3000000 2999526 1 1 1

4000000 3998436 1 1 1

5000000 4997965 1 1 1

6000000 5997935 1 1 1

7000000 6997935 1 1 1

8000000 7997817 1 1 1

9199930 9197561 1 1 1

Total 

Number of 

Simulations

Number of 

Unsafe Cases Precision Recall f1-score

1000000 188 0.25 1 0.4

2000000 202 0.32 1 0.48

3000000 474 0.29 1 0.45

4000000 1564 0.34 1 0.51

5000000 2035 0.31 1 0.48

6000000 2065 0.25 1 0.35

7000000 2065 0.17 1 0.29

8000000 2183 0.18 1 0.31

9199930 2369 0.18 1 0.3
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Figure 6. Simulation Results for Safe Cases using Logistic Regression. 

 

Figure 7. Simulation Results for Unsafe Cases using Logistic Regression. 

In the third part of this section, the Artificial Neural Network Model was deployed 

and simulations were performed on the dataset consisting of 9,197,561 safe events indi-

cating a safe level of CMM’s concentration and 2369 unsafe events indicating a dangerous 

level of CMM’s concentration. Simulations were performed on different sample sizes in 

the following combinations: 1,000,000, 2,000,000, 3,000,000, 4,000,000, 5,000,000, 6,000,000, 

7,000,000, 8,000,000 and 9,199,930. The detailed results for those simulations is illustrated 

as shown below: 

Total Number 

of Simulations

Number of 

Safe Cases Precision Recall f1-score

1000000 999812 1 1 1

2000000 1999798 1 1 1

3000000 2999526 1 1 1

4000000 3998436 1 1 1

5000000 4997965 1 1 1

6000000 5997935 1 1 1

7000000 6997935 1 1 1

8000000 7997817 1 1 1

9199930 9197561 1 1 1

Total 

Number of 

Simulations

Number of 

Unsafe Cases Precision Recall f1-score

1000000 188 0.48 1 0.65

2000000 202 0.43 1 0.6

3000000 474 0.45 1 0.62

4000000 1564 0.47 1 0.64

5000000 2035 0.53 1 0.7

6000000 2065 0.51 1 0.68

7000000 2065 0.5 1 0.67

8000000 2183 0.45 1 0.62

9199930 2369 0.43 1 0.6



Eng. Proc. 2025, x, x FOR PEER REVIEW 10 of 12 
 

 

 

Figure 8. Simulation Results for Unsafe Cases using Artificial Neural Network. 

 

Figure 9. Simulation Results for Unsafe Cases using Artificial Neural Network. 

Based on the results above, it is clear that all the three models perform really well in 

predicting the safe events but does that mean that they are all robust and efficient enough 

in detecting and predicting dangerous concentrations of methane? The answer to this 

question is no. There is a major imbalance in the dataset as shown in the figure above. If 

we consider the dataset in its totality, there are 2369 cases of Unsafe cases over a total of 

9,199,930 cases and that amounts to only 0.026%. As a result, if one takes the accuracy of 

these models as a metric to measure their strength, it will lead to an erroneous conclusion 

as the accuracy tell us how well the model is doing and in this case that will relate to how 

good is the model at picking up safe cases. The minority class of unsafe classes will be 

therefore overlooked in such an analysis and that will not contribute in creating an algo-

rithm that is good in detecting unsafe concentrations of methane. Therefore, other metrics 

need to be employed to correctly assess the robustness and efficiency of the above tested 

models in terms of their predictability capacity. The metric that has been considered is the 

precision. The precision parameter contributed in answering the following question: Out 

of all the unsafe events detected, how many are really unsafe events? Basically it ensures 

that only the real cases of unsafe events are picked up and all the false alarms are filtered 

out. 

Total Number 

of Simulations

Number of 

Safe Cases Precision Recall f1-score

1000000 999812 1 1 1

2000000 1999798 1 1 1

3000000 2999526 1 1 1

4000000 3998436 1 1 1

5000000 4997965 1 1 1

6000000 5997935 1 1 1

7000000 6997935 1 1 1

8000000 7997817 1 1 1

9199930 9197561 1 1 1

Total 

Number of 

Simulations

Number of 

Unsafe Cases Precision Recall f1-score

1000000 188 0.98 1 1

2000000 202 1 0.74 0.85

3000000 474 1 0.7 0.83

4000000 1564 0.98 0.83 0.9

5000000 2035 0.98 0.85 0.91

6000000 2065 0.98 0.88 0.92

7000000 2065 1 0.75 0.86

8000000 2183 0.98 0.93 0.96

9199930 2369 0.99 0.83 0.9



Eng. Proc. 2025, x, x FOR PEER REVIEW 11 of 12 
 

 

Figure 5 clearly shows that for the simulation of the Naïve-Bayes Algorithms, a low 

precision was achieved across the different sample sizes. This indicates that the model 

performed poorly in detecting the real cases of unsafe events and this generated a lot of 

false alarms. This is an example of an algorithm that cannot be applied in a real life situa-

tion because it will wrongly flag standard cases as unsafe ones causing unnecessary dis-

ruptions during underground mining operations. Figure 7 shows an improvement in the 

predictive capacity of the model when a logistic regression algorithm is used. The preci-

sion presents a maximum value of 0.53 and a minimum value of 0.43. Despite this im-

provement, the logistic regression algorithm still performs poorly as those values indicate 

that around half of the predictions made are actually made up of false positives. However, 

Figure 9 shows a drastic improvement in the predictive capacity of detecting dangerous 

concentrations of methane when an artificial neural network is deployed. The minimum 

value recorded is 0.98 and a maximum value of 1.0 was recorded in three different simu-

lations over three different datasets. That indicates that in three different instances, the 

algorithm correctly identified all the different unsafe cases of methane without any false 

positives. In order to improve those predictions, it must be noted that since the dataset is 

very imbalanced in nature, it is therefore highly recommended that resampling methods 

like SMOTE must be applied in order to improve the machine intelligence algorithms in 

their learning capacity towards the minority class, precisely the Unsafe class for this spe-

cific research. 

4. Conclusions 

This research presented an approach into comparing three machine learning models 

with the objective down the line to build a classification model that has a high predicta-

bility ability to detect dangerous or unsafe concentrations of methane. The research 

started with handling a dataset containing records of methane concentrations, environ-

mental or climatic factors as well as physical factors. Since there was a desire to build 

predictive models that are climatic or environmentally oriented for the prediction of coal 

mine methane, the assumption was made that the only inputs to the machine learning 

model that will be considered are the temperature, airflow, pressure as well as the humid-

ity. The dataset was cleaned and the required content was extracted to serve as input to 

the different machine learning models. The three models were tested on different sample 

sizes of data and a classification report was issued after each simulation with the necessary 

statistical parameters to evaluate the robustness and reliability of these models. The pa-

rameters that were used were the precision, f1 score and the recall. These parameters were 

selected as they can provide a robust answer to the question “How efficient are the models 

in picking the unsafe situations keeping in mind that there is a major imbalance favoring 

the safe class over the unsafe ones? The evidence displayed in Section 4 indicated that the 

Artificial Neural Network (ANN) performed better compared to the Naïve Bayes and the 

Logistic Regression in when it came to the prediction of unsafe cases. This research indi-

cates that machine learning models built on neural networks algorithms perform better in 

their predictive capability in this type of situations. A further study into this research will 

include the use of more advanced deep learning models working in a hybrid approach 

with optimization algorithms like the Black Kite Algorithm (BKA). 
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