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Abstract: For a reliable assessment of sustainability in big cities, it is imperative to evaluate 

urban ecosystem conditions and the environment of the cities undergoing economic growth. 

Urban green spaces are valuable sources of evapotranspiration, which is generated by trees 

and vegetation; these spaces mitigate urban heat islands in cities. Land surface temperature 

(LST) is closely related to the distribution of land-use and land-cover characteristics and can 

be used as an indicator of urban environment conditions and development. This study 

evaluates the patterns of LST distribution by employing the thermal spatial distribution 

signature procedure using thermal infrared data obtained from Landsat-5 Thematic Mapper. 

A set of 18 images, between 1985 and 2010, was used to study the urban environment 

during summer in 47 neighbourhoods of Porto Alegre, Brazil. On a neighbourhood scale, 

results show a non-linear inverse correlation (R² = 0.55) between vegetation index and LST. 

The overall average of the LST is 300.23 K (27.8 C) with a standard deviation of 1.25 K 

and the maximum average difference of 2.83 K between neighbourhoods. Results show that 

TSDS analysis can help multi-temporal studies for the evaluation of UHI through time. 
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1. Introduction  

Owing to civilisation in the 19th century, land use cover was strongly transformed without 

precedent, which is strongly related to the high acceleration of industrialisation. In recent decades, 

excessive local demands on environmental systems became global in scope [1].  Since then, soil 

occupation processes have been frequently demonstrated to be in disagreement with sustainable 

development concepts. Although there are a number of diverse definitions of urban sustainability, the 

core value of urban sustainability always lies in the balance of environmental, economic and social 

development [2]. However, the monitoring of local environmental problems and planning has been 

increasingly perceived as an institutional and governmental tool for introducing principles of 

sustainable development as well as for serving as urban sustainability indicators [2]. Herein, 

environmental problems refer to any human-induced damage to the physical environment resulting 

from land use and land cover (LULC), estate pressure, unfair waste management and unintended side 

effects caused by human activity in the urban environment. 

Surface and atmospheric modifications caused by urbanisation generally lead to a modified thermal 

climate, which is warmer than the surrounding non-urbanised areas [3]. Cities use construction 

material such as concrete and asphalt, which do not allow water to penetrate into the soil. In addition, a 

high proportion of the incident shortwave radiation is absorbed and transformed into sensible heat [4]. 

This phenomenon which modulates the air temperature of the lowest layers in the urban atmosphere is 

called urban heat island (UHI); it is central to the surface energy balance, it helps to determine the 

internal climate of buildings and it affects the energy exchanges that affect the comfort of city dwellers 

[3]. 

It is essential to have knowledge about UHI in earth sciences for urban climatology, global 

environmental change and management practices in the urban environment because LST is closely 

related to the distribution of LULC characteristics [5,6], and the physical conditions and properties of 

the vegetation types and surrounding urban environment are key factors that determine LST 

distribution [7].  

It is well known that shade trees and even small plants for land cover, such as shrubs and grass, help 

cool the urban environment [8]. Green space or vegetation areas are, in an absolute sense, an 

indispensable component of urban sustainability [2]. Several benefits can be ascribed to green spaces 

in the urban environment caused by their capacity of cooling the air [9] and reducing the available 

surfaces for successively radiating energy reflectance. Furthermore, urban green spaces are always 

beneficial not only for mitigating UHI, but also for evapotranspiration, which is generated by trees and 

vegetation in cities, and for cooling the air by using the surrounding urban environment heat from the 

air to evaporate water [10].  

A literature review has indicated that thermal satellites with adequate temporal and spatial 

resolution data can accurately estimate surface physical properties and other related variables 

[11,12,13,14,15,16]. Study from [17] has demonstrated that urban areas could be studied and identified 

by means analyses of thermal remote sensing data.  

Most of the research has focused on the classification accuracy of features and mapping. However, 

there has been significantly less interest in the development of methods which concentrate on the 

understanding of statistical implications on the classification of the temporal resolution of features and 

LULC through time. 
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The Landsat data series satellites have collected several years of data in the thermal spectral band 

and have been used in several studies on UHI [18]. For the reliable assessment of sustainability in big 

cities, it is imperative to evaluate urban ecosystem conditions and the environment for cities 

undergoing economic growth. Thus, the launch of the Landsat Data Continuity Mission (LDCM) on 

11th February 2013, which carried the thermal infrared sensor (TIRS), will extend the Landsat data 

archive from the earlier missions, thereby allowing long-term studies [19]. 

In this study, we discuss the development of a quantitative methodology for the evaluation of the 

general physical conditions of the urban environment based on the vegetated land cover characteristics 

by monitoring of the LST distribution in the urban environment. We also evaluate a specific approach 

for the identification of multi-temporal patterns of LST distribution in the urban environment. 

The concept for the assessment of urban LST distribution is referred to as thermal spatial 

distribution signature (TSDS) from the study of [16]. This paper takes their method a step further and 

combines the applicability of medium spatial resolution satellite imagery and provides an objective 

methodology for decision makers and planners. In this paper, we do not evaluate the absolute 

temperature fluctuations in different periods. Instead, we evaluate the increase of separability between 

temperatures of neighbourhoods after several years of urban environment development. The objective 

is to develop an LST-based procedure using medium-resolution sensor images, which can aid in the 

understanding of urban environment development and land cover change assessment. 

2. Materials and Methods 

2.1. Study Area  

The study area is the city of Porto Alegre, located at latitude of 30°01′59′′ South and longitude of 

51º13′48′′ West. The region predominantly experiences a subtropical mid-latitude climate (Cfb) with 

four well-defined seasons [20]. The mean annual temperature is 19.5 C, varying between 12 and 26 

C. The annual mean precipitation is 114 mm, and the yearly accumulated average precipitation is 

1373 mm with no dry period. The city is covered by a Landsat scene path 221/row 081. The 

municipality elevation average is 19 m above the sea level, with the total population of the city being 

1,467,816 in 2013 [21]. This study analyses 47 neighbourhoods near downtown, which covers an area 

of 9,077 ha. Figure 1 shows the study area.  
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Figure 1. Urban area of Porto Alegre in Brazil and the study area with 47 neighbourhoods. 

 

 

2.2. Satellite Imagery and Data Set 

Our analysis combined Landsat-5 TM images from different periods. A set of 25 images was 

initially used to study vegetation conditions and the development of the urban environment between 

1985 and 2010; however, only 18 images were specially selected because of better atmospheric 

conditions. 

To evaluate the most precise combination data for multi-temporal analysis, the key question is what 

are the window periods and their extension for performing adequate imagery combination and for 

extracting LULC diagnosis. By using this conceptual question, the TSDS procedure consists of the 

analysis and interpretation of statistical data associated with LULC, which leads to the spatial and 

temporal variations of LST distribution. In this study, the data sources used for TSDS distribution 

analysis included the following information levels: 

 

i. Monthly rainfall data obtained from the Database for Meteorological Research of the Instituto 

Nacional de Meteorologia (http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep), which covers 

the period from October to December. These data were used to identify drought periods in the warmest 

season; 

ii. Climatological normal of accumulated rainfall from October to December; 

iii. Landsat-5 TM images distributed in Brazil by the Instituto Nacional de Pesquisas Espaciais 

(INPE: www.dgi.inpe.br); 

iv. Geolocation reference images from National Aeronautics and Space Administration-Global 

Land Survey (http://landsat.gsfc.nasa.gov/). 

 

 

http://landsat.gsfc.nasa.gov/
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2.3. Imagery Calibration and Data Generation  

2.3.1 Reflectance Data Generation  

Reflectance values were generated by complete calibration and correction of digital numbers (DN) 

according to Landsat Calibration Documents [22]. After conversion to at-satellite radiance, each image 

was converted to at-satellite reflectance (assuming a uniform Lambertian surface under cloudless 

conditions). First, in this study, DN were converted into radiance and next to reflectance, according to 

the calibration parameters of [23] and LST [24] at the same math code. Regarding the calibration of 

reflectance channels, for the accurate transformation of DN into reflectance data, the images were also 

atmospherically corrected according to [25] as variations of atmospheric conditions are spatially and 

temporally significant [22]. Correction includes atmospheric- and sensor-related parameters and then 

the derivation of physical units such as reflectance [26]. In the strict sense, full image correction 

involves both applications of absolute calibration coefficients for sensors and parameters related to 

atmospheric correction to derive surface reflectance estimates [22]. By this approach, the data 

necessary to perform atmospheric correction in the visible bands 1–5 can be obtained from the image 

itself [27] by restricting the atmospheric influence, as the radiation transfer from the Earth’s surface to 

on-orbit sensors causes a weighted displacement effect, which depends on the wavelength of visible 

bands on a per-pixel-basis demand. Considering the imagery processing protocol established in [16] as 

a quality control for the atmosphere effects, Landsat 5 TM imagery was submitted to a threshold 

criterion to which no image was used when the amount of atmospheric contamination effects exceeded 

60 DN in the blue band. 

TOA reflectance can be obtained by applying the radiance–reflectance conversion equation, 

according to Equation 1.  

 

ρ =
π 𝐿𝜆 𝑑

2

𝐸𝑆𝑈𝑁𝜆 𝑐𝑜𝑠𝜃𝑠

      (1)  

 

Here, Lλ is the spectral radiance at the sensor in each band (W/cm
2
 sr m); 

d is the distance between the Earth and the Sun in astronomic units (UA); 

ESUNλ is the average solar atmospheric irradiance (W/cm
2
 m); 

   θs is the solar zenith angle (degrees). 

 

Reflectance values from bands 3 and 4 were used to generate the enhanced vegetation index (EVI-

2) data according to Equation 2 from [28]. EVI-2 is a two-band version of EVI that has been developed 

for sensors without a blue band [28]. It retains sensitivity and linearity as EVI for high leaf area index 

(LAI) canopies but does not rely on the usually poor-quality blue band [29]. Once we have the 

corrected TOA reflectance, EVI-2 can be computed without a blue band but remains equivalent to 

EVI. In this way, EVI-2 calculation (Equation 2) can be used as an acceptable substitute of EVI over 

atmospherically corrected pixels [28]. NIR and Red represent the obtained reflectance in the near-

infrared and red bands of Landsat-5 TM, respectively. 
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EVI2 = 2.5 ∗
NIR − Red

NIR + 2.4 ∗ Red + 1
 (2)  

2.3.2 Thermal Data Generation    

For thermal analysis, from band 6, after converting DN into absolute radiance values, LST is 

computed from at-satellite brightness temperatures (i.e. blackbody temperature) under the assumption 

of unity emissivity and using pre-launch calibration constants [30,22]. Then, LST is corrected to non-

unity surface emissivity according to the formulation of [24], which does not perform corrections to 

atmospheric effects (absorption and emissions along the path) because of the difficulty with estimating 

water vapour content from thermal detection in the mono-window band 6 [31,32]. 

A set of numerous factors need to be quantified to assess accurate LST retrieval from satellite 

thermal data, including sensor radiometric calibration [33], atmospheric correction [34,25], surface 

emissivity correction [35] and physically driven conditions of land coverage [6]. The conversion of the 

detected thermal radiation to brightness temperature [22] is given in Equation 3. Next, LST is obtained 

by correcting the radiating surface temperature to the surface emissivity (ε), which is the ratio of the 

thermal energy radiated by the surface to the thermal energy radiated by a blackbody at the same 

temperature [35]. The accurate retrieval of LST from thermal spectral bands also requires an estimate 

of emissivity from surface coverage [36]. Surface emissivity is controlled by factors such as water 

content, chemical composition, structure and roughness [37]. Emissivity depends on the LAI as given 

by Equation 4 [35] as follows: 

 

LST =
K2

ln (
𝜀𝑁𝐵∗K1

L
+ 1)

 (3)  

εNB = 0.97 + 0.0033 ∗ LAI        (4)  

 

Here, LST is the emissivity-corrected surface temperature (K); 

K1 is the calibration constant 1 (607.76 W/m
−2

 sr
−1

μm
−1

); 

K2 is the calibration constant 2 (1260.56 W/m
−2

 sr
−1

μm
−1

); 

L is the blackbody radiance of the thermal band 6 (W/cm
2 

sr m); 

εNB is the emissivity factor, which depends on the type of surface coverage; conditions 

when LAI < 3.0, εNB = 0.98 because the increased water content in vegetation actually 

increases emissivity capacity. 

 

The generated image product is composed of cloud-free images and good-quality geo-referencing 

metrics. The latter was used to provide accurate geo-registration on a per-pixel-basis of the selected 

images, as shown in Table 1. 
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Table 1. Selected Landsat-5 TM imagery for monitoring the studied area  

 

Imagery Land Surface Temperature (LST) Enhanced Vegetation Index (EVI-2) 

 Date Min. Max. Average SD Min Max. Average SD 

1 05/Jan/1985 291.3 303.5 298.6 1.22 −0.19 0.51 0.09 0.100 

2 06/Feb/1985 292.2 304.4 298.7 1.45 −0.27 0.53 0.11 0.113 

3 24/Jan/1986 298.6 310.8 305.4 1.51 −0.27 0.52 0.11 0.113 

4 20/Feb/1990 289.4 302.7 297.7 1.77 −0.32 0.54 0.11 0.119 

5 06/Jan/1991 296.2 319.3 305.1 1.83 −0.28 0.53 0.11 0.117 

6 09/Jan/1992 293.8 304.0 299.6 1.24 −0.23 0.53 0.10 0.107 

7 12/Feb/1993 292.2 302.7 297.9 1.32 −0.21 0.54 0.11 0.116 

8 30/Jan/1994 296.0 307.6 302.3 1.42 −0.30 0.52 0.11 0.116 

9 06/Jan/1997 293.8 305.6 299.7 1.46 −0.16 0.52 0.10 0.110 

10 27/Dec/1998 292.9 305.6 300.5 1.63 −0.55 0.68 0.09 0.110 

11 02/Feb/2001 291.5 303.1 297.4 1.28 −0.25 0.52 0.09 0.110 

12 20/Jan/2002 294.0 304.0 299.6 1.16 −0.24 0.51 0.09 0.105 

13 11/Feb/2004 289.9 304.4 298.1 1.50 −0.37 0.51 0.09 0.107 

14 12/Jan/2005 287.5 313.6 305.2 2.02 −0.35 0.49 0.08 0.096 

15 02/Jan/2007 294.9 307.6 301.7 1.68 −0.32 0.52 0.10 0.113 

16 06/Feb/2008 290.4 305.2 298.3 1.75 −0.27 0.54 0.10 0.110 

17 07/Jan/2009 289.4 303.1 296.5 1.76 −0.25 0.51 0.10 0.116 

18 28/Dec/2010 293.1 309.3 301.7 2.17 −0.39 0.51 0.10 0.113 

2.4. LST and Biophysical Descriptors  

In the natural environment, dry, bare and low-density soils, for example, have been linked to high 

LST as a result of the relatively low thermal inertia [38]. These thermal properties vary with the type 

of soil and moisture content [38]. On the other hand, in the urban environment, non-evaporative and 

impervious surface areas not only play an important role in UHI formation [13] but also in heat 

generated by anthropogenic sources such as traffic and industries [39]. This is because the emissivity 

of soils or sparsely vegetated areas is a function of soil moisture conditions and soil density 

[40,39,36,16]. The physical fundamentals for such a relation rely on the fact that for any surface 

material, certain internal properties such as heat capacity, thermal conductivity and inertia play 

important roles in governing the temperature of a body at equilibrium with its surroundings [41]. 

In the summer season, generally 10%–30% of the Sun’s energy reaches the area below a tree, with 

most of it being absorbed by leaves and used for photosynthesis and some being reflected back into the 

atmosphere [8]. Leaves and branches reduce the amount of solar radiation that reaches the area below 

the canopy of a tree or plant. Even so, thermal responses for vegetation can also highly vary as a 

function of the biophysical properties of the vegetation itself as well [42,5]. This concept is based on 

the assumption that vegetation coverage mitigates high LST occurrence values. The relationship 

between thermal characteristics of surface and vegetation indices has been extensively documented in 

the literature [43,44,38,12,45,46,47,6]. Many studies have observed a negative relationship between 

LST and vegetation indices. Given this and considering that temperature is closely related to 

physiological activities of vegetation cover, LST can be a useful measure of the physiological activity 

of the top canopy leaves when a leaf cover is sufficiently high such that they are not affected by soil 

surface temperature [45]. 
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For UHI studies, the LST and vegetation index relationship has been utilised by several authors 

[48,18] to understand the role of LST in urban development and vegetation coverage dynamic 

assessment. The LST obtained from satellite imagery is, strictly speaking, a measure of the ‘skin’ 

temperature or surface radiometric energy (kinetic) emitted from the land surface and is related to the 

thermal infrared (TIR) radiation rather than air temperature [31,36], which is more commonly used in 

physiological studies [45].  

In surface areas characterised by full vegetated or fraction of vegetation cover, thermal properties 

from non-vegetated surface areas can significantly influence the surrounding measurements of LST 

through the thermal processes related to direct sunlight interception. In this way, when studying a 

histogram of LST distribution through time, it is expected that the highly developed and urbanized 

areas or sparsely vegetated areas is not able to cool the surrounding sensible heat by 

evapotranspiration, as it typically does, which leads to a spread of LST range by increasing statistical 

indicators in terms of the variance of distribution towards higher LST values. However, vegetation 

index measurements are subject to seasonal variations, which may influence the results on UHI 

studies, and thus, such measurements may not serve as a good indicator for urban development [39]. 

2.5. TSDS Approach 

The study of LST is closely related to the distribution of LULC characteristics. Typically, 

simplified models that describe LULC can provide a link between LST and physical spatial 

distribution. However, LST is highly variable through time, which does not allow the comparison of 

absolute values in a simplified conceptual approach. In addition, further statistical analysis plays an 

important role in linking LST to the surface characteristics [42]. In doing so, to better understand the 

physical descriptors of heating effects over the urban environment, as a representative of their 

development through time, we only compared the summer season imagery to detect the most 

pronounced LST values associated with surface coverage. 

The TSDS procedure using TIR data obtained from Landsat-5 TM was applied to evaluate the 

radiometric pattern of the urban environment and vegetation coverage conditions. TSDS is a criterion 

for multi-temporal imagery combination of data, which is based on the relation between the thermal 

characteristics of surface and coverage and consists of the standard deviation (SD) analysis of LST to 

compare images by means similarity characteristics. This is because during some periods, intensive 

cover change caused by seasonal conditions or even different government policies can cause a rapid 

urban environment change in a relatively few years. 

By using the TSDS approach over the urban environment, it is possible to observe variations on the 

LULC area through time, and after that, to stabilise groups of similar imagery data according to their 

spatial distribution conditions. Furthermore, regarding the relation between LST and vegetation index, 

and considering the same study area through time, heterogeneous surface coverage with different types 

of impervious surface coverage presents a range of temperature distribution wider than that where 

homogeneous green areas prevail [39]. 

It is important to note that the studied urban area in the early period (1980s) was under physically 

driven conditions of surface and vegetation coverage different from those in the most recent period. 

The main problem for an individual analysis of the imagery data set is associated with the high 

variability related to urban environment dynamics [30] and seasonality [39]. 
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The challenge is to obtain the best combination of images, which are most representative of similar 

development conditions for each neighbourhood, not only for the spatial characterisation of land 

use/land coverage in the urban environment, but also for time proximity, which characterises the time 

window of chronological events of urban environment development. To obtain an accurate 

combination of images, it is important to consider time separability. In doing so, a combination of a 

group of images that represent the same stabilised conditions is required.   

2.6. Grouping multi-temporal imagery 

According to TSDS methodology, after the SD deviation analysis and before any further 

comparison, imagery data must be grouped into a set of images having similar SD values, as shown in 

Figure 2. This is because different SD values imply some development or LULC change, which is 

different from other images with different SD values, even when separated by a few years. We 

performed the following six steps for grouping the selected images according to TSDS analysis:  

 

i. Individually perform SD analysis of LST distribution for each image available;  

ii. Set groups of images by their temporal proximity; 

iii. Set groups of selected images with similar SD;  

iv. Calculate the average LST for each selected group. Even considering that the average 

calculation will significantly change the LST values, this processing step is important because the aim 

is to preserve the spatial distribution characteristic, not the values; 

v. Calculate the LST average in the entire study area, which are 47 neighbourhoods in this case, on 

a pixel basis. This step is important to the evaluation of the LST deviation from the first image. It is 

important to note that, although no conclusion can be observed about the variation of the LST values 

through time, caused by temperature and weather seasonality, the spatial characteristics of LST 

distribution, are preserved; 

vi. Compare the imagery data between neighbourhoods. A scatterplot comparing LST with EVI-2 

on a neighbourhood basis can show the LST trend of neighbourhoods through time in the multi-

temporal imagery data. 

 

The analysis of vegetation coverage conditions using the LST distribution indicated that in the first 

period, a wide range of LST was associated with high fractions of impervious surfaces or degraded 

vegetation conditions. The analysis of EVI-2 distribution indicated that vegetation coverage density 

did not increase in the neighbourhoods; however, there has been an overall spread of vegetation 

coverage areas. 

There are several conditions of LULC related to seasonal characteristics and urban environment 

development, which can cause variability of SD. Figure 2 shows bar-chart diagrams for the 18 dates 

monitored between 1985 and 2010. A highly variable trend of LST distribution through time was 

observed, caused by its characteristics of urbanisation and development. The general variation of SD 

values was between 1.16 and 2.17. This figure also shows the groups of images selected to perform the 

analysis. For group formation, only 12 images were selected (three for each group). Regarding the 

grouping step of LST, which combines the three available images for each group in a simple average, 

the obtained LST variation for each group was 294.94 to 305.43 K (average = 300.89 K) in the first 
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group; 294.89 to 304.20 K (average = 299.93 K) in the second group; 292.66 to 303.12 K (average = 

298.35 K) in the third group and 292.01 to 305.32 K (average = 298.84 K) in the fourth group. 

Figure 2. Standard deviation distribution of LST through time in the study area from 1985 

to 2010 and selected groups obtained with TSDS procedure. 

 

 

Combining all 18 images, it is possible to identify the patterns of LST distribution. The overall 

average of the LST was 300.23 K (27.8 C) with a standard deviation of 1.25 K with the maximum 

average difference of 2.83 K between the neighbourhoods. The intra-period averages were 1.23, 1.20, 

1.18 and 1.58 for the first, second, third and fourth periods, respectively. It is also important to note 

that the intra-period of SD was in agreement with the general behaviour of the multi-temporal data. 

This result indicates that the LST distribution adheres to the evaluated physical concept of vegetation 

coverage in the two different studied periods. Figure 3 shows the LST averages obtained from all 

selected images in the study area. 
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Figure 3. Average of LST between 1985 and 2010 and estimated UHI in Porto Alegre 

municipality. 

 

 

3. Results and Discussion 

3.1. Validation comparison for UHI identification  

After the formation of groups by the TSDS approach, the imagery data between neighbourhoods 

can be compared. Figure 4 shows scatterplots of the LST trend of neighbourhoods through time in the 

multi-temporal imagery data.  

The validation step, which compares the obtained results of TSDS estimates with those obtained 

from EVI-2, for the evaluation of vegetation cover, indicated that the two estimates were in good 

agreement. The LST and EVI-2 distributions inside the urban environment, as shown in Figure 4, 

revealed a wider range of LST in the fourth period than in the previous ones.  

The most pronounced variation occurred in the neighbourhoods which received the train line in 

1985. The train line goes from downtown in the west site towards the north. LST colours in dark blue 

and dark red, represent the highest and lowest temperatures, respectively. Results also show that the 

SD of LST distribution is related to the amount of green vegetated areas and urban environment 

conditions [16]. This is in agreement with the expected inverse mathematical relation based on the 

physical assumption that LST and EVI-2 data, at a given pixel, vary inversely over time. 

By considering the bioclimatic conditions of vegetation coverage in the urban environment, the 

challenge is to understand what represents vegetation development. Background contamination can 

actually promote imbalance in the relation between bands 3 and 4 (EVI-2 calculation), potentially 

leading to decreases in the resulting EVI-2 values under the influence of wetland areas. Regarding the 

seasonal effects and fluctuation of vegetation cover conditions, it is well known that in drought-free 

years, well-developed vegetation reflects only a small portion of incident solar radiation in the visible 
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band of the spectrum because of chlorophyll absorption properties and other plant pigments that 

absorb sunlight [49]. In the NIR, plants reflect much more because of a scattering effect caused by the 

internal structure and water content of leaves [50]. The performance of the TSDS was validated by 

LST distribution analysis in relation to the vegetation index EVI-2 data. This analysis relates the LST 

to the vegetated land coverage capacity to perform evapotranspiration. 

On the neighbourhood scale, results show a non-linear inverse correlation (R² = 0.55) between 

vegetation index and LST.  

 

Figure 4. Scattergram of the estimated LST distribution in the urban area of Porto Alegre 

municipality considering the 47 neighbourhoods within the four groups (a, b, c and d), 

respectively. 

 

(a)                                                                                (b) 

 

(c)                                                                                 (d) 

 

An important challenge is to understand how the spread of LST can increase without small or no 

change of general conditions in the EVI-2. One explanation is to increase the built and impervious 

areas with the increase of neighbourhood development. Hence, it can be understood that the 

temperature of the areas increases while maintaining the same overall conditions of the EVI-2. These 

areas result in a spreading a forward variation of LST, resulting in a smoothing on the curve as can be 

seen in Figure 4 (b, c and d). 

Although daily weather variations of temperatures can actually mask the range of LST distribution, 

a slight decrease in the EVI-2 values, below 0.1 units, was associated to the neighbourhoods in the 

third and fourth groups. A decreasing trend of the total vegetated areas was also observed by analysing 
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the EVI-2 distribution. In this way, it is worthwhile to note that, in recent years, as the overall 

vegetation cover conditions remained almost the same, the built and impervious areas were intensified 

because of an increase in the surrounding commercial and economical activities. This increase is 

particularly true towards the northern neighbourhoods (Floresta, Navegantes e São Geraldo) which 

have had the train line since 1985.  

To explain the changes in the temperature pattern occurring in the three districts of Porto Alegre, we 

assume an urban metabolism concept. This concept performs an analogy between an organism and a 

city in which there is a stream of inflows and outflows to the urban system, storage of energy, water, 

materials, nutrients and waste [51]. According to [52], the metabolic flux of a city is influenced by 

factors such as land use, spatial configuration, population density, population size, economic status, 

infrastructure and lifestyle of its residents. The analysis of these indicators and their relation to the 

metabolic flux of a city are crucial for understanding urban metabolism, and hence, in the case of our 

study, may help to explain the increase in LST occurring in three northern neighbourhoods over 25 

years.  

Considering Porto Alegre, each neighbourhood has different characteristics caused by the patterns 

of urban development prevailing over the past decades. In the case of Floresta, Navegantes and São 

Geraldo neighbourhoods, two factors stand out. The first one is related to the presence of the train line 

since 1985, and some large avenues, which have access roads into and out of the city, and are present 

in the two districts; the second one concern the existence of industrial plants, corporate services and 

companies located in these regions.  

The two factors may be somewhat inter-related to the increase of pollution, population decline and 

imbalance in land use. In these neighbourhoods, results indicate that the most pronounced increase of 

average LST was associated with the installation of surface train facilities on April 1985 and occurred 

in two periods. In the first period, the higher LST averages immediately occurred in the 

neighbourhoods directly associated with the train line. In the second period, an increase in the average 

LST was observed in some adjacent neighbourhoods. This spreading area of average LST coverage 

was primarily identified to occur towards the north of the city’s downtown border (west sites) in the 

developing new neighbourhoods. However, an increase in the average LST was not detected in the 

new vegetated areas of the same neighbourhoods. 

A different approach must be considered to the case of Vila João Pessoa, which appears to exhibit 

another particular behaviour of urban environment development. Vila João Pessoa is the first suburban 

neighbourhood around 1940, with the same developed sub-standard conditions without adequate 

planning [53], maintaining the same poor conditions of infrastructure, residential and high population 

density and vegetated areas and low standard trees for years. Most of its population live in a society 

with no fixed job, and survive on the collection of waste (industrial waste, plastic bottles). In 2010, the 

average income of residents of Vila João Pessoa was 3.23 salary units, with the average for the entire 

Porto Alegre city being 5.3 salary units. Higher and lower salary units were observed in 

neighbourhoods which are far away from downtown and were not included in the study area, namely 

Pedra Redonda and Serraria, both with 18.24 and 5.24 salary units, respectively.  

Although it is possible that the reduced public health policies contribute to the precarious situation, 

which leads to the strengthening of low educational status about the need for environmental 

preservation [53] the identification of such patterns may help develop strategies and overcome 

obstacles in the urban environment, promoting sustainability and quality of life [54].  
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4. Conclusions  

Our results show that TSDS analysis can help multi-temporal studies for the evaluation of UHI 

through time. Although the multi-temporal study of UHI is a difficult task, mainly caused by 

temperature and weather seasonality, the TSDS approach can be used for the imagery selection and 

pre-processing analysis. 

The TSDS approach preserves the features and spatial distributions of LULC conditions in the 

urban environment for the identification of different levels of development on a neighbourhood scale. 

Additionally, the association between the LST and EVI-2 on the neighbourhood level demonstrated to 

be straightforward for UHI studies. 

In summary, based on the concept of urban metabolism, some factors such as land use and spatial 

configuration of urban areas can be analysed together over the years to a better understanding of UHI 

at neighbourhood scale. 

For further studies, more accurate results for a pixel basis analysis can be obtained by artificial 

neural network training parameters. In this context, the launch of the LDCM on 11 February 2013 and 

TSDS can further assist the management of local and regional urban areas by providing reliable spatial 

information. 
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