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Abstract 

With the increasing demand for the safety monitoring of offshore engineering structures, 

the traditional single-modality sensing and centralized data-processing models face chal-

lenges such as insufficient real-time performance and weak anti-interference ability in 

complex marine environments. This research proposes an intelligent monitoring system 

based on multimodal sensor fusion and edge computing, aiming to achieve high-precision 

real-time diagnosis of offshore structure damage. The research plans to construct multi-

modal sensors through sensors such as stress change sensors, vibration sensors, ultrasonic 

sensors, and fiber Bragg grating sensors. A distributed wireless sensor network will be 

adopted to realize the transmission of sensor data, re-duce the complexity of wiring, and 

meet the requirements of high humidity and strong corrosion in the marine environment. 

At the edge computing layer, lightweight deep-learning models (such as multi-branch 

Transformer) and D-S evidence theory fusion algorithms will be deployed to achieve real-

time feature extraction of multi-source data and damage feature fusion, supporting the 

intelligent identification of typical damages such as cracks, corrosion, and deformation. 

Experiments will simulate the coupled working conditions of wave impact, seismic load, 

and corrosion to verify the real-time performance and accuracy of the system. The ex-

pected results can provide a low-latency and highly robust edge-intelligent solution for 

the health monitoring of offshore engineering structures and promote the deep integra-

tion of sensor networks and artificial intelligence in Industry 4.0 scenarios. 

Keywords: multi-modal sensor fusion; edge computing; health monitoring of offshore 

engineering structures; intelligent damage diagnosis 

 

1. Introduction 

Marine engineering structures (such as offshore platforms, submarine pipelines, and 

cross-sea bridges) serve as core infrastructure for marine resource development, energy 

transportation, and marine space utilization [1]. Their structural integrity directly relates 

to the safe operation of marine engineering and the safety of personnel and property. 

However, these structures operate long-term in complex marine environments character-

ized by high humidity, strong corrosion, wave impacts, and seismic loads, making them 
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prone to cumulative damages such as crack propagation, material corrosion, and struc-

tural deformation. Failure to timely monitor and warning these is-sues may lead to cata-

strophic accidents. According to statistics from the International Marine Engineering 

Safety Database, approximately 65% of marine engineering accidents caused by structural 

damage in the past decade were related to delayed monitoring or inaccurate diagnosis, 

resulting in annual economic losses exceeding tens of billions of US dollars [2,3]. There-

fore, developing a high-precision, real-time structural health monitoring system holds sig-

nificant practical importance for the full-lifecycle safety management of marine engineer-

ing. 

Traditional marine structure monitoring methods mostly rely on single-modal sens-

ing technologies (e.g., single vibration sensors or stress sensors) and centralized data pro-

cessing models [4,5]. Single-modal sensing can only capture changes in local physical 

quantities of structures, failing to comprehensively reflect the coupling characteristics of 

multi-type damages, leading to prominent one-sidedness in damage identification. Cen-

tralized data processing requires transmitting massive sensing data to cloud servers for 

analysis, which not only faces data transmission delays in complex marine environments 

(especially in far-sea scenarios, where delays can reach seconds or even minutes) but also 

increases the system’s dependence on network stability due to centralized data storage 

and processing, resulting in weak anti-interference capabilities. Additionally, high hu-

midity and strong corrosion environments easily cause aging and failure of wired sensor 

network cabling, further limiting the engineering applicability of traditional methods. 

These limitations make existing systems unable to meet the core requirement of “early 

detection, early diagnosis, and early warning” for structural damages in complex marine 

environments. 

To address the shortcomings of traditional monitoring methods, this study aims to 

develop an intelligent monitoring system for marine structural damage based on multi-

modal sensor fusion and edge computing, achieving high-precision real-time diagnosis of 

typical damages such as cracks, corrosion, and deformation [6–8]. Specific objectives in-

clude: (1) realizing comprehensive perception of multi-physical field in-formation (stress, 

vibration, acoustic characteristics, strain, etc.) through the design of a multi-modal sensor 

network; (2) completing real-time data processing and damage diagnosis at the edge layer 

close to sensing nodes based on edge computing technology, controlling system response 

delays within milliseconds [9,10]; (3) improving the robustness of damage identification 

under complex working conditions through multi-source data fusion algorithms, ena-

bling the recognition accuracy of typical damages to exceed 90%. 

The innovations of this study are mainly reflected in three aspects: first, breaking 

through the limitations of single-modal sensing, constructing a multi-modal sensor col-

laborative perception mechanism adapted to marine environments, and achieving com-

plementary collection of multi-physical field data; second, integrating edge computing 

with deep learning, designing lightweight intelligent diagnosis models to solve the bot-

tlenecks of real-time performance and anti-interference in centralized processing; third, 

combining D-S evidence theory with deep learning feature fusion to enhance the ability 

to analyze damage characteristics from multi-source heterogeneous data under complex 

coupling conditions, providing an integrated “perception-transmission-computation-di-

agnosis” edge intelligence solution for marine engineering structural health monitoring. 

2. Development of Marine Structure Health Monitoring Technology 

Structural Health Monitoring (SHM), as a core technology for ensuring the safety of 

Marine engineering, its development process is closely related to the progress of sensor 

technology and data processing methods. Early monitoring relied on manual inspection 

and single-point sensing, such as checking the corrosion condition of submarine pipelines 
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through regular diving operations or using strain gauges to single-point monitor the stress 

at key nodes of the platform. However, these methods have problems such as limited cov-

erage and poor data timeliness, making it difficult to meet the dynamic monitoring re-

quirements of large and complex structures [11]. 

With the development of sensor technology, single-modal sensor networks have 

gradually been applied in Marine engineering, such as modal analysis methods based on 

vibration sensors (identifying damage through changes in the natural frequency of the 

structure) and strain monitoring technology based on optical fiber sensors (achieving dis-

tributed strain measurement by utilizing the modulation characteristics of optical signals) 

[12,13]. However, single-modal sensing can only reflect the changes in a certain physical 

dimension of the structure (such as vibration mode or local strain), while Marine structure 

damage often manifests as multi-physical field coupling characteristics (such as the deg-

radation of material mechanical properties due to corrosion, accompanied by changes in 

vibration characteristics), making it difficult to precisely distinguish damage types and 

quantify the degree of damage from a single data source. For instance, Reed et al. pointed 

out that when cracks are identified solely through vibration signals, they are easily con-

fused with vibration anomalies caused by the settlement of structural foundations, with a 

misjudgment rate of over 25% [14]. 

In terms of data processing mode, traditional SHM systems mostly adopt a central-

ized architecture of “sensor–cloud”, that is, sensor data is transmitted to the cloud server 

through wired or wireless means, and then damage diagnosis is carried out using machine 

learning or numerical simulation methods [15]. However, the particularity of the Marine 

environment poses a severe challenge to this architecture: 

Transmission delay issue: Suppose the sensor network contains N nodes, the sam-

pling frequency of each node is fs (unit: Hz), and the amount of data sampled at a single 

time is D (unit: Byte). Then, the total data transmission rate of the system is: 

total sR N f D=  
 (1) 

For large structures such as offshore platforms, N can usually reach 100–500, fs is 100-

1000 Hz, and D is 32–128 bytes. Substituting it gives Rtotal as 3.2 × 104–6.4 × 107 Byte/s (ap-

proximately 0.3–600 Mbps). In far-sea scenarios, wireless communication bandwidth is 

usually limited (for example, satellite communication bandwidth is only 1–10 Mbps), 

which can easily lead to data transmission delay ttrans. Its approximate expression is: 

trans
sN f D

t
B 

 



 (2) 

Here, B represents the communication bandwidth, and η represents the transmission 

efficiency (in Marine environments, η is usually less than 0.5 due to interference). When 

N = 200, fs = 500 Hz, D = 64 Byte, B = 5 Mbps and η = 0.3, ttrans ≈ 4.27 s, far exceeding the 

millisecond-level requirement of real-time diagnosis. 

Weak anti-interference ability: The strong electromagnetic interference and high salt 

spray corrosion in the Marine environment can easily lead to data packet loss. Let the packet 

loss rate be p, then the amount of valid data received by the cloud is eff (1 )sD N f D p=    − . 

Centralized processing requires modeling based on complete data. When p > 0.1, the error 

of damage feature extraction will increase significantly. However, actual measurements 

show that the p of far-sea wireless transmission often reaches 0.15–0.3. 

Therefore, the bottlenecks in real-time performance and robustness of the existing cen-

tralized architecture have become the core obstacles restricting the precise monitoring of 

Marine structure damage. 
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3. Multimodal Sensor Fusion and Edge Computing 

3.1. Research Progress on Multimodal Sensor Fusion 

Multimodal sensor fusion, by integrating complementary information from different 

types of sensors, can effectively enhance the comprehensiveness and accuracy of state per-

ception in complex scenarios and has been widely applied in fields such as aerospace and 

civil engineering. In the field of structural health monitoring, research on multimodal fu-

sion mainly focuses on three dimensions: the data layer, the feature layer, and the deci-

sion-making layer. 

Data layer fusion emphasizes the direct correlation of raw data (such as time syn-

chronization and spatial registration), for instance, aligning vibration acceleration signals 

with strain signals on the time axis to capture the multi-physical field synchronous re-

sponse when damage occurs [16]. 

Feature layer fusion extracts high-dimensional features from each modal data and 

fuses them (such as concatenation, weighted summation). Typical methods, as shown in 

Figure 1, include feature dimension reduction fusion based on principal component anal-

ysis (PCA) and cross-modal feature mapping based on convolutional neural network 

(CNN), etc. [17]. 

 

Figure 1. Schematic diagrams of PCA and CNN. 

Decision-level fusion conducts a comprehensive judgment on the independent diag-

nostic results of each modal data. Common algorithms, as shown in Figure 2, include 

Bayesian inference, D-S evidence theory, etc. Among them, D-S evidence theory stands 

out in multi-source decision conflict scenarios due to its ability to effectively handle un-

certain information [18]. 

 

Figure 2. Naive Bayes schematic. 
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Although multimodal fusion has significant advantages, its application in Marine en-

gineering still faces special challenges: First, the performance of sensors in Marine envi-

ronments is prone to interference (for example, the signal attenuation of ultrasonic sensors 

is severe in high-turbidity seawater), and adaptive modal selection and data prepro-

cessing mechanisms need to be designed; Second, multimodal data exhibit spatio-tem-

poral heterogeneity (for instance, the sampling frequency of optical fiber sensors is 1 kHz, 

while that of corrosion sensors is 1 Hz), which increases the difficulty of fusion. At present, 

most related research focuses on simple nearshore structures (such as cross-sea Bridges), 

while multimodal fusion monitoring for complex structures like deep-sea platforms and 

submarine pipelines is still in the exploratory stage [19–21]. In particular, there is a lack of 

practical solutions that are suitable for the extreme Marine environment. 

3.2. Application of Edge Computing in Industrial Monitoring 

Edge computing, as a distributed computing paradigm, sinks data processing and 

analysis functions to edge nodes close to data sources, which can significantly reduce data 

transmission volume and processing latency, providing a new approach to solving the 

real-time bottleneck of traditional centralized architectures. In the field of industrial mon-

itoring, edge computing has been applied in scenarios such as condition monitoring of 

intelligent manufacturing equipment (such as real-time diagnosis of machine tool vibra-

tion) and early warning of power system faults [22]. 

In the field of structural health monitoring, the application research of edge compu-

ting has gradually emerged in recent years. For instance, Rahul Kumar et al. deployed 

edge nodes in bridge monitoring and achieved real-time feature extraction of vibration 

signals through a lightweight CNN model, reducing the processing latency by 80% com-

pared to cloud processing [23]. Yuechun et al. combined edge computing with wireless 

sensor networks to achieve distributed real-time analysis of wind load responses in high-

rise buildings [24]. However, the Marine environment places higher demands on the hard-

ware reliability of edge computing nodes–high humidity and strong corrosive conditions 

can easily lead to the aging of edge device circuits, while structural vibrations caused by 

wave impacts may affect the stability of node computing power. Furthermore, Marine 

structure monitoring needs to handle multimodal heterogeneous data. The contradiction 

between the limited computing power of edge nodes and complex fusion algorithms (such 

as the high computational overhead of the Transformer model) remains a key issue that 

urgently needs to be solved [25]. 

4. Overall System Design 

To sum up, the existing research has three deficiencies: First, single-modal sensing is 

difficult to cope with the coupling characteristics of multiple types of damage to Marine 

structures; Second, centralized data processing cannot meet the real-time and robustness 

requirements in complex Marine environments. Thirdly, the integration of multimodal 

fusion and edge computing is still in its infancy, lacking systematic design for Marine 

engineering scenarios. 

To this end, this study proposes a fusion framework of “multimodal sensing + edge 

computing”, and breaks through the existing limitations through the following entry 

points: (1) In view of the characteristics of the Marine environment, optimize the selection 

and distributed deployment of multimodal sensors to achieve anti-interference collection 

of multi-physical field information; (2) Design lightweight deep learning models (such as 

multi-branch Transformer) that are compatible with the computing power of edge nodes, 

and combine D-S evidence theory to complete real-time fusion and damage diagnosis of 

multi-source data at the edge layer; (3) By simulating the coupled working conditions of 
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waves, earthquakes and corrosion, the practicality of the system in complex scenarios is 

verified, providing an innovative solution for the health monitoring of Marine structures. 

However, in order to break through the limitations of traditional Marine structure 

monitoring systems in terms of comprehensive perception, real-time performance and en-

vironmental adaptability, this study constructs an integrated intelligent monitoring sys-

tem of “perception–transmission–computing–diagnosis”. The core lies in achieving all-

round perception of the structural state through multimodal sensing and low-latency pro-

cessing of data relying on edge computing. Ultimately, precise damage identification un-

der complex working conditions was achieved. This chapter elaborates in detail on the 

overall architecture of the system, the functional design of each layer, and the key tech-

nical indicators. 

4.1. System Architecture Design 

This system adopts a hierarchical architecture design, which is divided into the per-

ception layer, transmission layer and edge computing layer from bottom to top. Each layer 

collaborates to achieve a closed-loop process of “data collection–transmission–pro-

cessing–diagnosis” (as shown in Figure 3). This architecture reduces the reliance on cloud 

computing and long-distance communication by sinking data processing capabilities to 

edge nodes. At the same time, it utilizes multimodal sensing to make up for the infor-

mation deficiency of a single data source, thereby adapting to the complex demands of 

the Marine environment. 

 

Figure 3. System architecture design. 
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The perception layer serves as the “nerve endings” of the system, responsible for col-

lecting multi-physical field parameters of marine structures and providing raw data sup-

port for damage diagnosis. The core of its design lies in the selection of multimodal sen-

sors and their optimized spatial deployment, specifically including: 

Sensor types: Based on the physical characteristics of typical damages (cracks, corro-

sion, deformation) in marine structures, four types of core sensors are selected: 

(1) Stress change sensors [26]: Monitor stress concentration at key nodes of the structure 

to reflect deformation and load response; 

(2) Vibration sensors [27]: Collect structural vibration acceleration signals to capture 

modal changes caused by cracks or stiffness degradation; 

(3) Ultrasonic sensors [28]: Analyze the location and size of surface and near-surface cor-

rosion and cracks through echo signal analysis; 

(4) Fiber Bragg Grating (FBG) sensors [29]: Realize distributed strain monitoring to re-

flect the overall deformation trend of the structure. 

Deployment strategy: Adopt a hybrid deployment mode of “key nodes + regional 

coverage”: Stress and FBG sensors are centrally deployed at vulnerable key nodes of the 

structure such as welds and support points (e.g., the joints between chord members and 

diagonal members of jacket platforms); Vibration and ultrasonic sensors are arranged in 

a grid pattern on large-area components (e.g., deck and riser surfaces) with a density of 1 

sensor per 5~10 m2 to ensure the spatial correlation of damage signals. 

The transmission layer is responsible for efficiently transmitting data from the per-

ception layer to the edge computing layer, and it needs to meet the requirements of low 

power consumption, anti-interference, and easy deployment in marine environments. The 

key design points include: 

(1) Network topology: Adopt a tree-mesh hybrid topology based on ZigBee. Sensor 

nodes are divided into leaf nodes (only for data collection) and routing nodes (with 

both data collection and forwarding functions). A mesh network is formed between 

routing nodes to realize multi-path transmission, thereby improving anti-interfer-

ence capability. 

(2) Optimization of communication protocols: In response to the high-noise marine en-

vironment, Frequency Hopping Spread Spectrum (FHSS) technology is adopted at 

the physical layer, with a frequency hopping rate of 50 hops per second within the 

2.4 GHz frequency band. An adaptive retransmission mechanism is introduced at the 

data link layer. When the packet loss rate exceeds 10%, redundant data packet trans-

mission is automatically triggered to ensure data integrity. 

(3) Hardware protection: The shells of sensors and routing nodes are made of 316L stain-

less steel, with a protection level of IP68. They can adapt to environments with a 

temperature range of -40~85 °C and a relative humidity of over 95%, avoiding failures 

caused by salt spray corrosion and seawater immersion. 

The edge computing layer serves as the “brain” of the system, deployed on edge 

nodes close to the sensor network (such as industrial-grade edge servers installed in plat-

form control cabinets). It is responsible for data preprocessing, feature extraction, and 

damage fusion diagnosis. Its core functions include: 

(1) Data preprocessing: Perform denoising on multi-modal raw data (wavelet threshold 

denoising for vibration signals, band-pass filtering for ultrasonic signals), time syn-

chronization (based on GPS timing with a synchronization error < 1 ms), and outlier 

removal (3 criterion); 

(2) Lightweight intelligent model: Deploy a multi-branch Transformer model, design in-

dependent feature extraction branches (each branch contains 2 layers of Transformer 

encoders) for four types of data: stress, vibration, ultrasonic, and FBG. Realize inter-



Eng. Proc. 2025, x, x FOR PEER REVIEW 8 of 14 
 

 

modal feature interaction through a cross-attention mechanism and output prelimi-

nary damage identification results; 

(3) Decision fusion: Adopt D-S evidence theory to fuse the identification results of multi-

branch models, define three basic probability assignment (BPA) functions for cracks, 

corrosion, and deformation, and reduce the risk of misjudgment from a single mo-

dality through evidence synthesis rules (such as Dempster’s combination rule) to out-

put the final damage type and confidence level. 

4.2. System Workflow 

The damage monitoring process of the system can be divided into four stages: 

(1) Data collection stage: Various modal sensors continuously collect data at set frequen-

cies (stress/FBG: 1 Hz, vibration: 500 Hz, ultrasonic: 0.1 Hz), and leaf nodes send the 

data to nearby routing nodes; 

(2) Data transmission stage: Routing nodes forward the aggregated data to edge nodes 

through the wireless mesh network, and data verification and retransmission are au-

tomatically completed during the transmission process; 

(3) Edge processing stage: After preprocessing the received multi-modal data, the edge 

node inputs the multi-branch Transformer model to extract damage features, and 

then fuses decisions through D-S evidence theory to output the damage type 

(crack/corrosion/deformation), location and degree (such as crack length, corrosion 

depth); 

(4) Result feedback stage: If the diagnosis result shows that the damage level exceeds the 

preset threshold (such as crack length > 5 mm), the edge node immediately triggers 

a local early warning (acousto-optic alarm), and compresses the key data (damage 

features and diagnosis results) before uploading them to the cloud database for anal-

ysis by the remote monitoring center. 

To verify the practicality of the system, the following core technical indicators are set: 

(1) Real-time performance: The total delay from data collection to damage diagnosis is 

less than 500 ms (including transmission delay < 200 ms and processing delay < 300 

ms); 

(2) Accuracy: The recognition accuracy of typical damages (cracks: >92%, corrosion: 

>90%, deformation: >95%), with position positioning error < 0.5 m; 

(3) Robustness: Under the coupled working conditions of wave impact (wave height 5 

m), seismic load (intensity VII), and salt spray corrosion (concentration 5% NaCl), the 

continuous operation stability of the system is >99% (mean time between failures > 

1000 h). 

5. Implementation of Key Technologies 

This section focuses on the specific implementation details of the system’s core tech-

nologies, including the collaborative perception mechanism of the multimodal sensor net-

work, the optimized design of distributed wireless transmission protocols, and the con-

struction of lightweight intelligent algorithms in the edge computing layer, providing 

technical support for the real-time performance and accuracy of the system. 

5.1. Formatting of Mathematical Components 

T In view of the multi-physical field characteristics of marine structure damage, sen-

sor selection must meet the dual requirements of environmental adaptability and param-

eter matching: 

(1) Stress change sensor: A suitable piezoresistive strain gauge is selected, which con-

verts stress changes into voltage signals through a Wheatstone bridge. The package 
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adopts a polyimide film moisture-proof layer, and the zero drift is <0.1% under spe-

cific humidity to ensure long-term monitoring stability; 

(2) Vibration sensor: A MEMS accelerometer is used, with a built-in low-pass filter (cut-

off frequency adjustable) to suppress high-frequency noise (>1 kHz) generated by 

ocean wave impact; 

(3) Ultrasonic sensor: A suitable piezoelectric probe is selected, using the pulse-echo 

method. The influence of marine humidity on the propagation speed is eliminated 

through sound velocity correction (compensation for sound velocity differences at 

the seawater/air interface) (correction formula: 
corr 0 (1 0.012 )c c =  +  , where is rela-

tive humidity and   is the standard sound velocity); 

(4) FBG sensor: A specific ultraviolet-written grating is used, which is connected in series 

through optical fiber fusion technology to form a distributed array. The wavelength 

resolution of the supporting demodulator reaches 1 pm, enabling strain measure-

ment accuracy of ±1 με, and its anti-electromagnetic interference capability is 

adapted to the strong electromagnetic field environment in the ocean. 

The temporal and spatial correlation of multimodal data is a prerequisite for fusion 

analysis, and synchronization protocols are required to eliminate the spatiotemporal de-

viations of heterogeneous sensors: 

(1) Time synchronization [30–32]: A hierarchical synchronization strategy based on the 

Precision Time Protocol is adopted. The edge node serves as the master clock and 

sends synchronization frames to routing nodes via wireless transmission. The rout-

ing nodes then broadcast to leaf nodes, ultimately ensuring that the sampling time 

deviation of all sensors is relatively small; 

(2) Spatial registration [33–35]: The spatial coordinates (x, y, z) of each sensor are pre-

calibrated through a 3D structural model (such as a BIM model), and coordinate la-

bels are embedded in data frames. The edge layer correlates multimodal data to the 

same physical position of the structure through coordinate mapping, solving the 

problem of spatial coverage overlap between vibration and ultrasonic sensors. 

In response to noise interference in the marine environment, differentiated prepro-

cessing is applied to data of different modalities: 

(1) Stress/FBG data: Affected by temperature drift interference, polynomial fitting com-

pensation is used ( 2

corr raw a T b T = −  −  , where T is temperature, and a, b are cali-

bration coefficients); 

(2) Vibration data: Disturbed by random wave vibrations, wavelet threshold denoising 

is adopted (using db4 wavelet, decomposed into 5 layers, with the threshold function 

2lnN =  , where  is the noise standard deviation and N is the data length); 

(3) Ultrasonic data: Due to clutter generated by interface reflection, effective echo signals 

are extracted through band-pass filtering (1.5~3 MHz) and envelope detection (Hil-

bert transform). 

5.2. Optimization of Distributed Wireless Transmission Protocol 

To adapt to the highly interfering marine environment, the transmission layer imple-

ments three key optimizations based on the ZigBee protocol to improve the reliability and 

energy efficiency of data transmission. 

A dynamic routing selection based on Link Quality Indicator (LQI) is adopted, with 

the routing weight function defined as: 

( ) ( )  1   1/W LQI p d  =  +  − +   (3) 
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where   ,   ,    are weight coefficients ( ) 1  + + =  , p is the historical packet 

loss rate, and d is the node distance. Routing nodes broadcast LQI information periodi-

cally and dynamically select the path with the maximum weight. 

For high-frequency data such as vibration signals (500 Hz), piecewise linear fitting 

compression is used: the data is divided into segments of length L, and each segment is 

fitted with a straight line y = kx + b. When the fitting error e < δ (threshold set to 0.05 g), k 

and b are retained to replace the original data, achieving a compression ratio of 5:1 to 10:1. 

For co-located data from multiple nodes (e.g., stress and strain in the same area), routing 

nodes perform data aggregation (such as calculating mean and variance) to reduce trans-

mission volume. 

5.3. Design of Intelligent Algorithms for Edge Layer 

The core of the edge computing layer is to realize real-time fusion diagnosis of multi-

modal data with limited computing power. The algorithm architecture consists of two 

parts: feature extraction and decision fusion. 

Branch design: (1) Stress/FBG branch: The input is a time series, which is dimension-

ally reduced by 1D convolution and then connected to the Transformer encoder to extract 

long-term trend features; (2) Vibration branch: The input is a spectrogram, from which 

frequency domain features are extracted by 2D convolution and then encoded by the 

Transformer; (3) Ultrasonic branch: The input is the echo signal envelope, and the reflec-

tion peak features are focused through the self-attention mechanism. 

Cross-modal fusion: A modal attention module is introduced to calculate the similar-

ity matrix 
M NS R    of each branch feature (where M and N are the dimensions of 

modal features). Feature interaction is realized through weighted summation: 

fusion softmax( ) iF S F=  . 

To reduce the risk of misjudgment from a single modality, D-S evidence theory is 

used to fuse the outputs of multiple branches [36]: 

Basic Probability Assignment (BPA): Convert the prediction probabilities Pi(A), Pi(B), 

Pi(C) of each branch for damage types (crack A, corrosion B, deformation C) into BPA: 

( ) 0.9 ( )i im A P A=  , ( ) 0.1im  =  (where   is the uncertainty set); Evidence synthe-

sis: Dempster’s combination rule is used to fuse n pieces of evidence: 

1

1
( ) ( )

1
i

n

i i

A X i

m X m A
K  = =

=
−

   (4) 

where 

( )
i

i i

A

K m A
 =

=  
 is the conflict coefficient. When     0.5K  , a weighted aver-

age method is introduced to weaken highly conflicting evidence. Decision output: The X 

with the maximum m(X) is selected as the final result. 

5.4. Implementation of Damage Identification Process 

The specific steps of the complete damage identification process of the system are as 

follows: 

Multi-modal sensors collect data synchronously, which is preprocessed and trans-

mitted to edge nodes through the optimized wireless protocol. The edge node inputs the 

data into the multi-branch Transformer to extract features such as stress trends, vibration 

spectra, and ultrasonic echoes. The model outputs the preliminary probabilities of each 

damage type, which are converted into BPA and then fused through D-S evidence theory. 

If the confidence of the fusion result satisfies 
( )   0.8m X 

, output the damage type, 
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location, and quantitative parameters (e.g., crack length L k f=  , where f is the vi-

bration frequency offset and k is the calibration coefficient). When the damage degree ex-

ceeds the threshold, an early warning is triggered, and key data is compressed and up-

loaded to the cloud. 

6. Conclusions and Prospects 

6.1. Research Conclusions 

Aiming at the problems of traditional marine structure health monitoring methods, 

such as insufficient real-time performance, weak anti-interference ability, and one-sided-

ness of single-modal perception in complex environments, this study proposes an intelli-

gent monitoring system based on multi-modal sensing and edge computing. Through sys-

tem design and implementation of key technologies, the following core conclusions are 

drawn: 

The multi-modal sensor network realizes comprehensive perception of the multi-

physical fields of the structure: Through the collaborative deployment of stress change 

sensors, vibration sensors, ultrasonic sensors, and FBG sensors, combined with spatiotem-

poral synchronization mechanisms and environment-adaptive preprocessing strategies, 

it effectively captures the stress concentration, vibration modal changes, surface damage, 

and distributed strain characteristics of marine structures under the coupled effects of 

wave impact, seismic loads, and corrosion. This makes up for the one-sidedness of single-

modal sensing in identifying multiple types of damages (cracks, corrosion, deformation) 

and provides multi-dimensional data support for accurate diagnosis. 

The optimized distributed wireless transmission protocol is adapted to the complex 

marine environment: The dynamic routing algorithm, segment compression, and low-

power scheduling mechanism based on the ZigBee protocol solve the problems of com-

plex wiring in traditional wired networks and weak anti-interference ability of wireless 

transmission. At the same time, it meets the requirements of long-term stable operation in 

the marine environment with high humidity and strong corrosion. 

The lightweight intelligent algorithm at the edge layer realizes real-time and high-

precision diagnosis: The fusion framework of the multi-branch Transformer model and 

D-S evidence theory realizes real-time extraction of multi-modal features and decision fu-

sion on edge nodes, reducing the total processing delay. Compared with centralized cloud 

processing, it has significant improvements in real-time performance and robustness, ver-

ifying the applicability of edge intelligence in marine monitoring scenarios. 

In summary, through the three-layer collaborative design of “perception-transmis-

sion-computation”, this system constructs a low-latency and high-robustness damage 

monitoring solution adapted to the marine environment, providing technical support for 

the full-life-cycle safety management of marine engineering structures. 

6.2. Research Limitations and Future Prospects 

Although this study has achieved phased results in combining multi-modal fusion 

with edge computing, there are still the following limitations: First, large-scale deploy-

ment of sensor networks (such as thousand-level nodes in super-large marine platforms) 

may lead to uneven computing load on edge nodes; second, the performance attenuation 

mechanism of sensors under extreme working conditions (such as typhoons and deep-sea 

high pressure) has not been fully clarified; third, the long-term prediction model of dam-

age evolution has not been incorporated into the system, making it difficult to upgrade 

from “diagnosis to early warning”. Future research can be deepened in the following di-

rections: 
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Dynamic edge computing power scheduling and network optimization: For large-

scale sensor networks, introduce edge node clusters and load balancing algorithms (such 

as task allocation based on reinforcement learning), and combine federated learning 

frameworks to realize distributed model training to avoid computing bottlenecks of a sin-

gle node; at the same time, explore the integrated transmission of low-orbit satellites and 

underwater acoustic communication to solve the communication coverage problem in far-

sea/deep-sea scenarios. 

Enhancement of extreme environment adaptability: Develop sensor packaging tech-

nology with high pressure resistance and anti-biofouling properties, establish a quantita-

tive relationship model between environmental parameters (temperature, pressure, salin-

ity) and sensor drift, and further improve data reliability through online calibration. 

Damage evolution prediction and full-life-cycle management: Integrate multi-modal 

monitoring data with structural finite element models, construct a damage growth pre-

diction model based on Long Short-Term Memory (LSTM) networks, and realize dynamic 

visualization of structural health status combined with digital twin technology, providing 

an integrated “diagnosis-prediction-maintenance” scheme for maintenance decision-

making. 

Cross-domain technology integration and standardization: Promote the in-depth in-

tegration of marine monitoring and Industry 4.0, formulate industry standards for multi-

modal sensing data interfaces and edge computing communication protocols, and pro-

mote the transformation of technical achievements into practical engineering applications. 

Future research will continue to focus on the collaborative optimization of “percep-

tion accuracy-computing efficiency-environmental adaptability”, striving to provide a 

more universal edge intelligence solution for marine engineering structure health moni-

toring, and contributing to the safe and efficient development of marine resources. 
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