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Abstract

Background: Detection is an important component of precision agriculture because accu-
rate weed identification and treatment have a direct impact on crop yield and resource
efficiency. Recent breakthroughs in artificial intelligence (AI) have enabled automatic
weed recognition systems; nevertheless, standard centralised machine learning models
present substantial obstacles such as high communication overhead, privacy issues, and
limited scalability in remote farming contexts. To address these restrictions, federated
edge learning (FEL) combined with deep learning and multimodal sensor fusion provides
a viable solution by allowing for distributed model training while maintaining data pri-
vacy. Objective: In this work, our goal is to develop a privacy-preserving distributed
weed detection and management system. The proposed work is integrated with FEL (Fed-
erated Learning), Deep learning with multi-modal sensor fusion to enhance the perfor-
mance of the model and simultaneously minimize the data transfer, latency, and energy
consumption. Materials and Methods: In this study, we used Multimodal sensors, such
as LiDAR (Light Detection and Ranging), RGB (Red-Green-Blue) cameras, multispectral
imaging devices, and soil moisture sensors placed in controlled agricultural plots. Each
modality gave complementary information for weed identification: RGB provided texture
and colour cues, multispectral collected spectral reflectance patterns, LIDAR delivered
structural depth information, and soil sensors supported contextual environmental con-
ditions. For robustness, three sensor fusion techniques were used: Early Fusion (feature-
level concatenation), Mid Fusion (intermediate feature aggregation), and Late Fusion (de-
cision-level integration). Deep learning models, such as Convolutional Neural Networks
(CNNs), LSTM-CNN hybrids, and Vision Transformers, were trained using standardised
parameters. A proposed Federated CNN (FedCNN) was deployed across multiple edge
devices, each locally trained on sensor data without exchanging raw data, using FedAvg
and FedProx algorithms. Validation was performed using a stratified 80/20 train-test split
combined with 5-fold cross-validation to ensure model generalization. Model perfor-
mance was assessed using accuracy, precision, recall, F1-score, AUC, latency, and energy
consumption, enabling a holistic evaluation of both predictive quality and computational
efficiency. The DL models, including CNNs, LSTM-CNN hybrids, and Vision Transform-
ers, are used. A FedCNN model is distributed across many edge nodes, allowing for de-
centralized training without exchanging raw data. For model performance measures, we
used different metrics like accuracy, precision, recall, F1-score, AUC, latency, and energy.
Result: The experimental work reveals that the model FedCNN performs well in compar-
ison to other models and achieved the highest accuracy of 94.1%, precision is 94.3%, recall
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is 93.9% and F1-score is 94.1%, AUC is 94.1% during hybrid fusion strategies. We com-
pared the centralized and federated learning performance. The FEL (Edge) accuracy is
94.1%, the Latency is 120 ms, the energy consumption is 300 (mWh), and the privacy risk
level is low. Conclusion: The combination of FEL and multi-modal sensor fusion provides
areliable and scalable approach for weed detection in precision agriculture. By processing
data locally and collaboratively at the edge, the system achieves high accuracy, decreases
response time, lowers energy consumption, and preserves data privacy.

Keywords: deep learning; FEL; sensor fusion; weed detection; precision agriculture

1. Introduction

In the 21st century, agriculture plays an important role. For this research work, envi-
ronmental monitoring plays the key role. The Al (artificial intelligence) is used to make
accurate decisions. Machine learning and deep learning techniques are rapidly being used
in agriculture to predict crop diseases, monitor plant health, detect weeds, and classify
pests. These applications showcase new and high-impact research fields where deep
learning has demonstrated great promise. Simultaneously, sensor technologies are fast
improving, allowing for more precise soil fertility assessments and supporting data-
driven crop recommendation systems. In this scenario, DL (Deep Learning) emerged as
one of the strongest techniques to solve the classification task. This technique allows us to
handle the hidden patterns automatically from the raw data. However, the dataset’s char-
acteristics, feature distribution, and task complexity can all affect how well a deep learn-
ing model performs on its own. To address the limitations of typical machine learning
models, in this paper, we used advanced fusion techniques to combine outputs from dif-
ferent models, improving robustness and accuracy in weed detection. We use a variety of
deep learning (DL) architectures, including Convolutional Neural Networks (CNNs),
Long Short-Term Memory (LSTM)-CNN hybrid models, and Vision Transformers (ViTs),
to capture spatial and temporal patterns in multi-modal agricultural data. Furthermore,
as a Federated Convolutional Neural Network (FedCNN) allows for decentralised train-
ing among distributed edge nodes, we suggest using one. By keeping raw data locally at
each node and sharing only model parameters like weights and biases with the central
server, this federated learning (FL) paradigm improves data security and privacy. Addi-
tionally, in order to successfully combine multi-modal inputs including LiDAR, RGB pho-
tography, and soil sensor data, three sensor fusion strategies —Early Fusion, Late Fusion,
and Hybrid Fusion—are investigated. In practical agricultural settings, this integrated
strategy improves energy economy, lowers latency, and protects data privacy while forti-
fying the system’s predictive performance.

This study contains 5 sections, where Section 1 provides the information and back-
ground details of weed detection, and Section 2 presents related work of weed detection
using deep learning, along with federated learning. Section 3 discusses the entire roadmap
of the proposed model for distributed weed detection in precision agriculture using mul-
timodal sensor fusion. Section 4 presents the results and discussion, followed by the con-
clusion and future scope.

2. Related Work

The author Xia et al. [1] used a multi-modal data fusion technique-based framework
for weed resistance assessment. The author has demonstrated how combining various
sensor modalities may efficiently capture geographical variability and create a strong link
between multi-modal features and resistant weed concentrations. The experimental work
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reveals that late fusion gives the best result of R? of 0.777 and RMSE of 0.547. Salve, P., et
al. [2] used several classification tasks to identify the plant types. The author used the
multi-modal fusion techniques to enhance the accuracy of plant type detection. Multiple
feature types, such as leaf spectral signatures, leaf colour, and morphological form fea-
tures, were used to process plant image datasets. The Genetic Algorithm-based Regres-
sion (GAR) model achieved an accuracy of 98.03%. Li, L., eta la [4] developed a framework
that allows for smart farming. The author’s objective was to design a lightweight FL
framework, which is called VLLFL. The mentioned framework allows for identifying crop
health and maintaining the pesticides. To optimize the crop, the author used FL along
with the deep learning models. Their experimental observation found that VLLFL ob-
tained 14.53% improvement and reduced 99.3% communication rounds. Anagnostopou-
los, C., etal. [5] discussed how FL is helpful in an AloT environment. The author discussed
the challenges, present problems, etc. The authors’ finding was to develop a novel classi-
fication strategy. The classification approach name is MMFL, which is used in the four
application areas. Hussaini, M., et al. [6] developed a deep learning model for crop detec-
tion. The author explored how FL is used for crop identification as well as weed detection.
The DL model YOLOvVS was used to train the dataset and apply the FL. model FedAvg.
The model was trained in homogeneous and heterogeneous environments. The Corn-
Weed dataset was employed, which consists of 3575 annotated images. The experimental
observation revealed that YOLOVS performs well in comparison to the other two versions
of the YOLO algorithm in terms of the performance metrics accuracy, memory space, and
CC (Computational cost) when the training is considered. Mamba Kabala, D., et al. [7]
developed a model that helps with crop disease. The author had used the FL models to
protect the data. The PlantVillage dataset was taken and used to develop deep learning
models, such as ViT, using FL. Rehman, M. U,, et al. [8] developed a model that allows to
detect weed detection using an advanced deep learning algorithm. The author considered
the family of YOLO algorithms to detect weed identification. Their model achieved a pre-
cision of 72.5%, a recall of 68.0%

3. Proposed Model for Federated Edge Learning for Distributed Weed
Detection in

Data Division: In this section, we split the dataset into three parts, and these are
training (70%, testing 15% and the remaining 15% was used for validation purposes.
Model Architectures and Parameters: Here there are different deep learning models are
employed for weed detection, and these are mentioned below:

CNN (Convolutional Neural): We used CNN with 5 layers, and each layer with its
kernel size of 3 x 3, ReLLU activation, and batch normalization. Next model is LSTM-CNN:
This is the hybrid model which combines an LSTM layer with 128 units to capture the
patterns. Vision Transformers (ViTs) are used with 12 attention heads and patch sizes of
16 x 16, along with feedforward networks of 2048 units. The hyperparameters are used for
different models, and these are: LR: 0.01, batchsize: 32 for local training and 64 during the
centralized evaluation. Apart from this, we also used the Adam optimizer where (31 =0.9
and 32 =0.999. The dropout we considered was 0.5 to avoid overfitting. The binary cross-
entropy loss has been considered for weed classification.

The above-mentioned Figure 1 presents the privacy preservation weed detection sys-
tem, and it consists of seven phases. And these descriptions are as described below: Phase
1: In this phase, we used the multi-modal sensors to collect the data from several sources.
In order to get the plant structure, we have used a LiDAR sensor that captures 3D spatial
types of data. For high-resolution images RGB camera is used to take a snapshot of the
weeds. Similarly soil moisture sensor is used for collecting the real-time moisture levels.
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Our objective was to collect the data from multi-modal sensors to monitor the weed
growth patterns. Apart from other aspects, also. In this research paper, we used a publicly
available dataset named “PlantVillage” for pertaining purposes. Apart from this dataset,
we also collected the data in-field images using different sensors (including smartphone-
based cameras). So we employed the hybrid dataset for identifying the weed. Phase 2:
During the prepossessing stage, we remove the noise, perform the normalization tech-
niques. To enhance the image quality, the RGB/multispectral images have been used. Be-
fore the model selection, we have done extensive way of data preparation and analysis.
The outcome of this phase is cleaned data, and it is processed at the edge level. To extract
a lightweight CNN-based. To minimize computational load, we have used leaf shape, col-
our histogram, spectral signatures, and soil metadata that are recovered using lightweight
CNN-based models after prepossessing. This procedure minimizes communication over-
head and protects privacy by ensuring that only pertinent, condensed features are kept.
Phase 3: Feature Extraction and Multimodal Sensor Fusion. In this phase, we have identi-
fied the relevant features which was extracted from the weed images. These features are
called multi-modal features. These features are further utilized for data fusion purposes.
The collected sensor data are further fused into the 3 following three categories: Early
Fusion: In this case, our collected sensors’ raw data is converted into a unified format. Mid
Fusion: Preprocess the sensor’s data independently and fuse the intermediate features and
Late fusion is used to combine the final sensor data and provide the average output. This
technique is used to classify the weeds and estimate the performance metrics. Phase 4: In
this phase, we used deep learning models that properly classified the weeds. The fused
data is passed into the deep learning model to deep dive to process and weed out the
identified. For extracting the spatial features, we used DL models; the LSTM-CNN model
is used for spatial-temporal analysis purposes. It is also called a hybrid model. Similarly,
a vision transformer (ViT) is used for the analysis of high-dimensional data.

Multimodal Sensors ] [Fusion Technique]
R i -
= LiDAR [ Early Fusion J
- » I o —————
o= RGB [ Mid Fusion ] * Weed
m Camera - I Detection
\ / Results
g Y [ } » Performance
@ Multispectral || Metrics
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~ - —’[ precision, et. )
326’- Soil Moisture | | « Energy/
| 7 Sensor Latency/
Privacy
s N \ /
Data -
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Figure 1. Proposed model for privacy-preserving weed detection system.

The above Figure 2 represents the sequence diagram for Federated Weed Detection,
which discusses the time-ordered interactions between the different components associ-
ated. Here, the components include are FL server, weed management, sensors, and edge)
etc. The data is usually collected from the different sensors and passed into the edge de-
vice. The sequence diagram discusses how the components interact with each other, and
it follows the hybrid fusion and local FedCNN training, then the model is encrypted and
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sent to to federated learning server. In the FL server, the FedProx algorithm is used for
aggregation. FL-server sent the updated global model to the edge devices. At the end, the
edge device is responsible for deploying the model for real-time weed classification. In
this paper, the weed detection accuracy obtained is about 94.1%.

Sensor Edge FL_Server Weed_Mgmt
Raw Data (LIDAR, RGB)
Preprocess « Fuze
-
Traln FedCNN
= D
-
Encrypted Gradients
Global Modet
Detection Results
Sensor Edge FL_Server Weed Mgmt

Figure 2. Sequence diagram for Federated Weed Detection.

4. Results and Discussion

Deep learning model creation and processing:

The acquired RGB and LiDAR datasets, as well as other sensor data, were prepro-
cessed through a series of procedures to ensure data quality and compatibility for deep
learning models. Images and point cloud data were first aligned using GPS coordinates,
then noise and outliers were removed. The data was scaled to 224 x 224 pixels for deep
learning models and normalised with min-max scaling to improve convergence during
training. Data augmentation techniques like as rotation, flipping, and brightness modifi-
cations were used to boost dataset diversity while reducing overfitting.

Table 1 discusses the performance metrics of the different feature fusion techniques.
There are three fusion techniques implemented, and these are Early Fusion, Mid Fusion,
Late Fusion, and Hybrid Fusion. All these fusion techniques are used against the FedCNN
model, which is used to detect weed identification. It has been observed that the hybrid
fusion technique obtained the highest accuracy of 94.1%, precision of 94.3% and recall of
93.9%, Fl-score is 94.1%, and AUC-ROC is 94%. It also observed that the 92.8% obtained
accuracy lin early fusion.

Table 1. Performance Comparison of Different Fusion Strategies with FedCNN.

Accuracy  Precision

Fusion Strategy Recall (%) F1-Score (%) AUC (%)

(%) (%)
Early Fusion 92.8 92.9 92.5 92.7 92.8
Mid Fusion 93.5 93.6 93.2 93.4 93.5
Late Fusion 93.7 93.9 93.4 93.6 93.7
Hybrid Fusion 94.1 94.3 93.9 94.1 94.1

From the above-mentioned Table 2 discusses the comparison of different deep learn-
ing models for weed identification. It has been observed that the best model is FedCNN,
and their accuracy is 94.1% as comparison to the other models. The AUC-ROC curve
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obtained 94.1%, F1-score is 94.1%. The FL uses the distributed edge devices for training
instead of centralizing data, which improves generalization while keeping privacy. The
traditional model, such as CNN, obtained the lowest accuracy of 90.5%. CNN can’t cap-
ture complex spatial patterns as well as hybrid or transformer-based architectures.

Table 2. Comparison of Deep Learning Models for Weed Detection.

Model Architecture Type Accuracy Precision Recall F1-Score AUC

(%) (%) (%) (%) (%)
ony  ConvolutionalNeu- g - 91 899 904 906
ral Net
LSTM-CNN - Spatial + Temporal =, 9.5 91.8 921 924
Hybrid Fusion
Vision Trans-  Attention-based 935 93.2 93.1 931 93.4
former Transformer
FedCNN (Pro- Federated ;NN 94.1 94.3 93.9 94.1 94.1
posed) (Edge Device)

Table 3 presents the comparison between centralized and federated edge learning. It
has been observed that the centralized model performs a little bit better than the federated
learning model. The FEL reduced the latency by 120 ms as well, and energy consumption
dropped from 500 mWh to 300 mWh.It helps to protect privacy more in comparison to the
centralized model.

Table 3. Centralized vs. Federated Edge Learning (FEL) Performance.

E ion Pri Risk
Learning Approach Accuracy (%) Latency (ms) nergy Consumption Privacy Ris

(mWh) Level
tralized L -
Centra 1.ze earn 94.5 250 510 High
ll’lg
Federated Edge
4.1 12 L
Learning (FEL) ’ ° - i

From the above Table 4 presents the comparison between FL algorithms. We have
compared the two FL algorithms like Fed Avg and Fed Prox. It has been observed that the
FedProx Fl algorithm’s accuracy is 94.1%, precision of 94.3% and F1-score is 94.1%. The
algorithm FedAvg is still competitive, but its performance is slightly lower because it is
sensitive to non-IID (not independent and identically distributed) data, which makes con-
vergence less stable.

Table 4. Comparison of FL Algorithms (FedAvg vs. FedProx).

FL Algorithm Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC (%) Latency (ms) Energy (mWh)
FedAvg 93.7 93.6 93.5 93.5 93.6 150 350
FedProx 94.1 94.3 93.9 94.1 94.1 120 300

In Figure 3, we compared the three different fusion techniques for FL. weed detection
along with the 5 performance metrics. It has been observed that the Hybrid fusion tech-
nique performs well with 94.1% accuracy and 94.3% precision. As well as it is also ob-
served that the late fusion (+1.4%) and early fusion (+3.9%). These findings help us under-
stand that Hybrid Fusions’ performance is good at balancing between precision and pri-
vacy preservation. But Late Fusion may be preferable for resource-constrained edge de-
ployments.



Eng. Proc. 2025, x, x FOR PEER REVIEW 7 of 12

100
. Accuracy
98 . Precision
= Recall
== Fl-Score
- AUC
—
;5; 94
Q
=
° 92
Vv
v
20
88
86

Early Fusion Late Fusion Hybrid Fusion
Fusion Strategy

Figure 3. Performance metrics by Fusion strategy.

In Figure 4, we have estimated the critical trade-offs between the centralized and
Federated learning environment, where our objective was weed detection. The FedCNN
obtained the highest accuracy (94.1% vs. 93.5%). The AUC-ROC curve is most important
to measure the cost of misclassifying (both TPR and TNR) for weed detection. When the
dataset is imbalanced, the traditional metrics like accuracy may not be ideal. In contrast,
the ROC curve helps to visualize the trade-off between TPR and TNR. The AUC gives a
solid measure of the model’s ability to tell the difference between things by putting this
performance into a single number.
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Figure 4. Critical trade-off between centralized and federated learning.

Figure 5 presents the AUC-ROC curve for fusion strategies that are used to determine
the contribution to the classification accuracy. During our experimental observation, we
found that our hybrid fusion approach obtained the highest AUC of 94.1%. It means that
this demonstrates how early weed detection is possible. The other two fusion techniques
were also utilized and obtained the performance with an AUC of around 93.7% and 93.5%.
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Figure 5. AUC-ROC comparison of fusion strategies.

Figure 6 presents the AUC-ROC curve, which is used to detect the weed using deep
learning models. It has been observed that FedCNN obtained the highest AUC Score of
94.1% as compared to the other DL models. Similarly, CNN obtained an AUC score of
90.6%, Vision transformer AUC score is 93.4%.In this graph, the top left is the better model.
The FedCNN AUC is one of the general models with having low TFR. It’s clear from these
results that federated learning and hybrid designs can help models work better on devices
that are spread out. This metric is suitable for handling binary class classification. If the
AUC is greater, it means that the model or fusion strategy can make more accurate pre-
dictions when the decision boundaries change. This is very important in edge-device fed-
erated learning settings like FedCNN, where the conditions for a threshold may change
on the fly based on how the data is distributed and how it is deployed.
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Figure 6. AUC-ROC comparison of different deep learning models.

In the above-mentioned Figure 7, we plot the precision and recall curve for weed
classification using the precision and recall scores of the different models. We evaluated
the different machine learning models that are used for a real-time insect detection and
monitoring system. We used the PR curve, especially when the dataset is imbalanced. It
allows researchers to visually assess how well each method balances precision and recall,
which helps them choose the highest-performing and most reliable approach for deploy-
ment.
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Figure 7. Precision and Recall Curve between fusion strategies and deep learning models.

In Figure 8, we compared the prediction accuracy of the federated learning CNN
model and the centralized model concerning the number of epochs. The solid line indi-
cates how the model behaves on the training data, and the dashed line visualizes valida-
tion accuracy. This visualization describes how the model behaves the unseen data,
whether it is a generalized model or not. The red line shows the highest validation accu-
racy as compared to the centralized training accuracy. The FL model exhibits little bit
slower convergence because of decentralized updates.
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Figure 8. Training time vs. validation accuracy.

The above-mentioned Figure 9 discusses the relationship between training and vali-
dation losses. During training, it estimates the cross-entropy loss. If the loss is less than
identified, as better optimized. The red line denoted as losses is the lowest one, which is
compared to the centralized loss, and it is represented as blue lines.
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Figure 9. Training vs. validation loss.

Figure 10 demonstrates the performance of different deep learning models and dis-
tributed FedCNN. This graph compares the performance of several deep learning mod-
els—CNN, LSTM-CNN hybrid, Vision Transformer (ViT), and the distributed FedCNN —
across three fusion strategies: Early Fusion, Late Fusion, and Hybrid Fusion. The above
figure depicts that the Hybrid Fusion model performs well in comparison to the other
models. The model FedCNN shows the best result, especially FedCNN.Apart from this,
Vision Transformer also performs well with strong generalization capabilities.
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Figure 10. Performance Comparison of Models and Fusion Strategies.

The above-mentioned Figure 11 presents a heatmap representation of the individual
machine learning models and fusion strategies. We have compared the fusion strategies
side by side.
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Figure 11. Performance Comparison of Models and Fusion Strategies.

5. Conclusions

This paper discussed the combined approach for weed detection in precision agricul-
ture. We used the fusion techniques along with federated edge learning to detect the weed
from the PlantVillage datasets. From our experimental observation, it has been observed
that the hybrid fusion techniques provide good results. The performance obtained of 94.1%
accuracy because of the three combined fusion strategies. The proposed Federated CNN
(FedCNN) achieved 94.1% accuracy, a recall of 94.3% and an F1-score is 94.1%. Overall,
the proposed FedCNN with Hybrid Fusion and FedProx optimization provides a robust,
efficient, and privacy-preserving method for weed detection, allowing real-time, sustain-
able, and scalable smart farming applications.
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