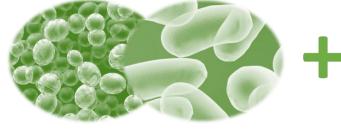
The 1st International Online Conference on Fermentation

12-13 November 2025 | Online

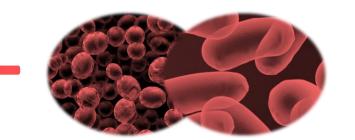
Assessing the Microbiological Quality of Innovative Sustainable Low- and No- Alcohol Wine Production

Martina Totaro^{1*}, Ester Presutto¹, Mariagiovanna Fragasso¹, Vittorio Capozzi², Barbara La Gatta¹, Giuseppe Spano¹



- ¹Department of Agriculture Food Natural Science Engineering, University of Foggia, Via Napoli 25, 71122, Foggia, Italy
- ²Institute of Sciences of Food Production, National Research Council (CNR), c/o CS-DAT, Via Michele Protano, 71122, Foggia, Italy
- *e-mail: martina.totaro@unifg.it

INTRODUCTION & AIM


The wine industry is facing a growing demand for low- and no-alcohol wines (LNAWs), driven by shifting consumer preferences and the impact of climate change. The project "INNOWINE"—Cascading Grant Spoke 3 - Project OnFoods—applied an optimised production cycle to limit alcohol formation during fermentation, offering an innovative alternative to conventional post-fermentation dealcoholization. Among the strategies tested, we investigated X-ray irradiation, a non-thermal method proposed as a replacement for sulfur dioxide and to improve wine microbial stability. Microbiological quality was assessed in experimental low-alcohol wines (EW) and grape must permeate (P) compared to conventional wine (CW).

'virtuous' microbes

safe fermentationsdesirable aromacompounds

negative microbes

- spoilage phenomena
- off-flavour releasepathogens
- toxic compounds

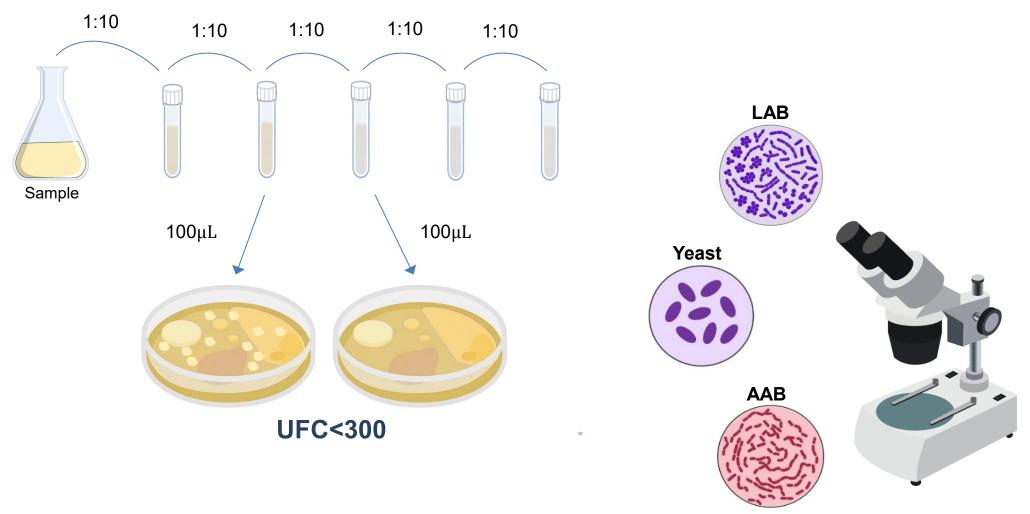
Figure 1. Virtuous vs negative microbes: assessing microbial impact is key in LNAWs production.

METHOD

Total mesophilic prokaryotes and yeasts were quantified using PCA and WLNM, respectively. Putative lactic acid bacteria (LAB), acetic acid bacteria (AAB), and *Brettanomyces* were enumerated on differential media (i.e. MRS, GYC, mWLNM), all supplemented with cycloheximide to suppress undesired yeasts and improve selectivity.

Culture Medium	Target Microorganisms	Selective Additives	References / Notes
Plate Count Agar (PCA)	Total mesophilic aerobic	_	Total viable count of
	and facultative anaerobic		mesophilic microorganism
	bacteria		
Wallerstein Laboratory	Total yeasts	Chloramphenicol 100	Differential medium for
Nutrient Medium		mg/L	yeasts in fermented
(WLNM)			products
De Man, Rogosa e	Lactic Acid Bacteria	Cycloheximide 50 mg/L	De Man, Rogosa &
Sharpe Agar (MRS	(LAB)		Sharpe, 1960 - Selective
Agar)			medium for LAB
Glucose-Yeast extract-	Acetic Acid Bacteria	Cycloheximide 50 mg/L	Gullo et al., 2006 –
Calcium carbonate Agar	(AAB)		Isolation of AAB from
(GYC Agar)			oenological matrices
Modified Wallerstein	Brettanomyces spp.	Cycloheximide 30 mg/L	Di Toro et al., 2015 –
Laboratory Nutrient			Modified selective
Medium (mWLNM)			medium for
			Brettanomyces spp.

Table 1. Differential media used for selective enumeration of target microbial groups in EW, P, and CW with references for standard protocols.


Samples were analysed with and without X-ray treatment at 0.5, 1.0, and 2.0 kGy.

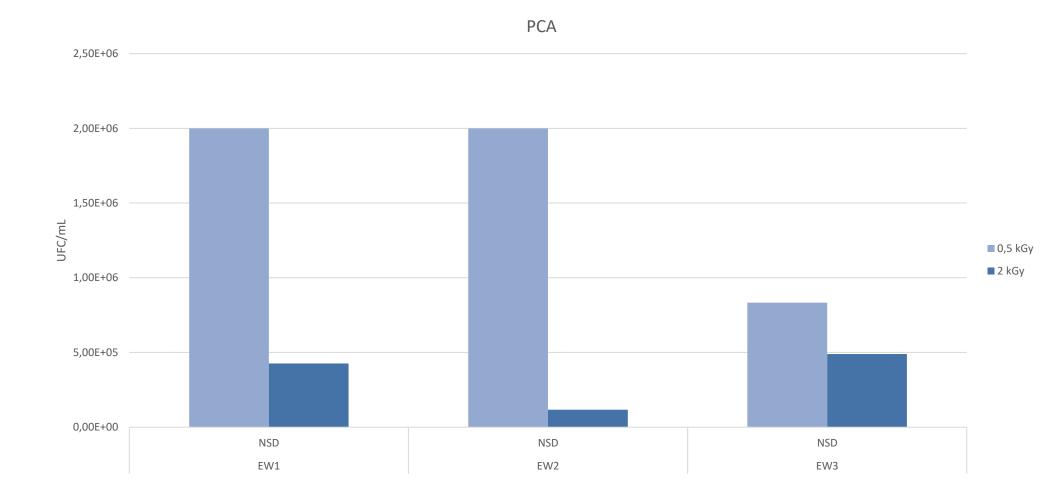


Figure 2: Serial dilutions and spread plating were performed to isolate and enumerate target bacteria and yeasts on selective media. Microscopic observations were conducted for a preliminary evaluation of the microbial targets. Gram staining was performed to distinguish between bacteria (LAB: Gram-positive; AAB: Gram-negative), while yeasts were observed to identify their morphologies.

RESULTS & DISCUSSION

Preliminary findings show higher microbial counts in EW and P than CW without irradiation. Irradiation progressively reduced microbial loads from partial reductions (i.e. 0.5 kGy) to marked reduction of microorganism across all media (i.e. 2.0 kGy).

Figure 3. Preliminary significant results showing mean total viable counts (CFU/mL) on PCA medium for LNAWs produced with different experimental vinification methods (EW1, EW2, EW3) and without sulfur dioxide (NSD). Irradiation at 2 kGy resulted in a lower microbial load compared to 0.5 kGy, with a dose-dependent reduction in the microbial population.

CONCLUSION & FUTURE WORK

- X-ray technology appears promising for stabilising LNAWs while preserving quality, offering a potential substitute for sulfur dioxide.
- Future work will explore process optimisation and scale-up of X-ray treatment, assessing its impact on wine composition and shelf-life.

REFERENCES

- de Man, J.C., Rogosa, M. and Sharpe, M.E. (1960) 'A medium for the cultivation of lactobacilli', *Journal of Applied Bacteriology*, 23(1), pp. 130–135. doi:10.1111/j.1365-2672.1960.tb00188.x
- Di Toro, M.R., Capozzi, V., Beneduce, L., Alexandre, H., Tristezza, M., Durante, M., Tufariello, M., Grieco, F. and Spano, G. (2015) 'Intraspecific biodiversity and "spoilage potential" of *Brettanomyces bruxellensis* in Apulian wines', *LWT Food Science and Technology*, 60(1), pp. 102–108. doi:10.1016/j.lwt.2014.06.059
- Gullo, M., Caggia, C., De Vero, L. and Giudici, P. (2006) 'Characterization of acetic acid bacteria in "traditional balsamic vinegar", *International Journal of Food Microbiology*, 106(2), pp. 209–212. doi:10.1016/j.ijfoodmicro.2005.06.024