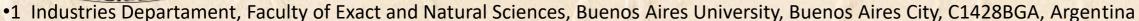
IOCFE
2025
Conference

The 1st International Online Conference on Fermentation

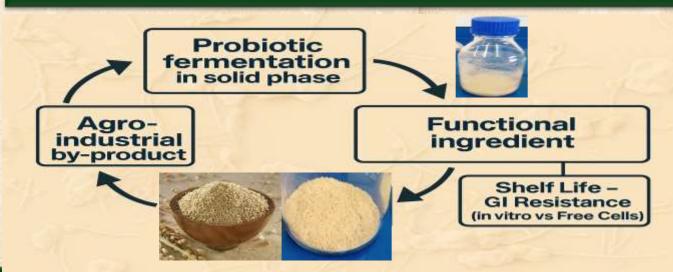


12-13 November 2025 | Online

Functional food based on rice bran containing Lactibacillus

acidophilus

Molina DA^{1,2*}, Flores SK^{1,2}, de Escalada Pla M ^{1,2}


itina Full summary by scanning QR coder

•2 Institute of Food Technology and Chemical Processes, CONICET-Buenos Aires University, Buenos Aires City, C1428BGA, Argentina. (ITAPROQ).

Research Area: 3. Fermentation Foods, Drinks, and Food Safety.

INTRODUCTION & AIM

Rice bran (RB) was used as substrate for preparing food ingredients (FI) containing *Lactobacillus acidophilus*. The fermentation systems were formulated using **rice bran (RB)**, **cheese whey (CW)**, and **water**, followed by the inoculation of *L. acidophilus* according to the proportions established in previous experimental design.

Figure 1. Solid-state fermentation in the creation of a functional ingredient.

METHOD

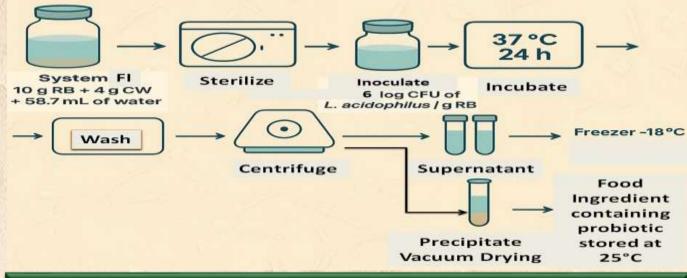
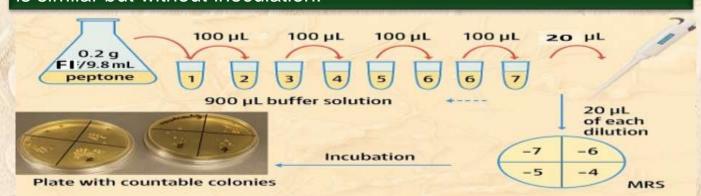
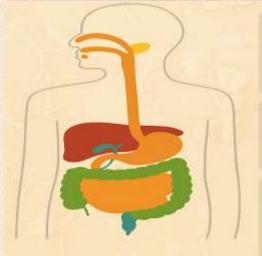




Figure 2. The creation of a functional ingredient. Note: control system is similar but without inoculation.

Figure 3. Determination of shelf-life, Cell counts were measured on MRS agar for 102 days.

Salivary Fluid Simulation 2.5 mL of artificial saliva solution

(NaCl 6.2 g/L; KCl 2.2 g/L; CaCl₂ 0.22 g/L; NaH 1.2 g/L)
2 min, 37°C, pH 7

Gastric Fluid Simulation

15 mL of HCI 0.01 N (pH > 2.0) were added, containing 0.025 g of gastric pepsin (Merck) 90 min agitation, 120 RPM, 37°C, pH 2–3

Intestinal Fluid Simulation

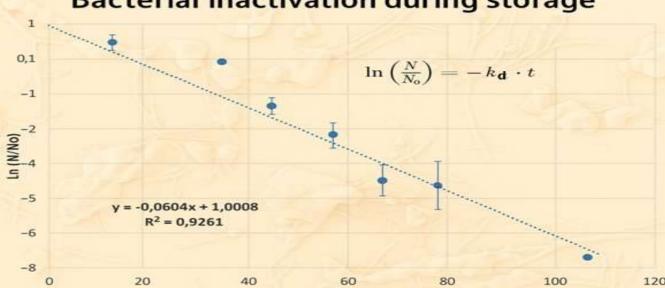

15 mL of phosphate buffer solution (pH =7.4) containing bile salts (0.6% w/v) pancreatin (0.3% w/v) were added 90 min agitation, 120 RPM, 37°C, pH 7.4

Figure 4. Gastric and intestinal digestion was simulated *in vitro* on different days of storage and were compared to free cells digestion.

RESULTS & DISCUSSION

The shelf-life results were adjusted to first-order kinetics: $Ln(N/N_0) = -k_d$.t, where k_d represents the death rate of L. acidophilus supported in the FI under the conditions tested; N corresponds to the cell count at different periods (days), and N_0 is the count at t=0 d.

Bacterial inactivation during storage

Graphic 1. Viability decreased according to first-order kinetics (R²=0.9261), with a death-rate of k=0.0604 d⁻¹, showing a progressive loss of viable cells during storage. The proposed process achieved a yield of ~0.75 g FI/g RB.

Note: Values are expressed as mean \pm SD (n = 3). * indicates significant difference (p < 0.05) compared with free cells.

Day	Treatment	%GR (Gastric Resistance)	%IR (Intestinal Resistance)
-	Free cells	86.7 ± 6.7	88.2 ± 4.2
1	System	51.3 ± 7.2*	65.4 ± 3.8*
15	System	79.4 ± 0.2	77.7 ± 0.2
34	System	90.0 ± 0.1	87.8 ± 0.4
47	System	95.9 ± 1.9	93.5 ± 1.3
60	System	83.2 ± 0.5	80.3 ± 2.2
70	System	90.1 ± 2.8	83.8 ± 9.6
83	System	87.2 ± 2.1	71.7 ± 0.6*
102	System	76.9 ± 1.4	93.2 ± 0.1

Table 1. Gastric and intestinal resistance (%GR, %IR) of probiotics contained in the FI and as free cells during storage. For free cells, an inoculum of 8,41±0,09 log UFC/mL was used.

Note: Values are expressed as mean \pm SD (n = 3). (*) indicates significant difference (p < 0.05) between FI and free cells.

CONCLUSION

RB demonstrate to be an excellent substrate for L. acidophilus, showing a high population (>7,6±0,1 Log UFC/g FI) after drying and during 102 d storage at 25 °C. In general, the GR and IR were relevant suggesting an important viability of the probiotic after digestion simulated conditions.

The use of RB can be recommended as a sustainable option for FI production.

showed good growth and interaction with the rice bran (RB) matrix. Vacuum drying preserved RB's nutritional properties and extended probiotic viability. Despite an initial cell reduction, viable counts remained higher than ~7,6±0,1 Log UFC/g FI for 100 days, keeping a good %GR and %IR Overall.

Acknowledgement

This work was supported by the following research projects: UBA: UBACyT 20020220200171BA and PIDAE 2022-2024; CONICET: PIP 2022-2024 11220210100712CO. We would like to thank the Villa Elisa Rice Cooperative, Entre Ríos, Argentina.

^{*}molinademian@gmail.com