12-13 November 2025 | Online

Optimization of solid-state fermentation process of Angelicae Pubescentis Radix stems and leaves by probiotics

Changsheng Bai, Qiujin Liu, Huan Wang

Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161005, China

INTRODUCTION & AIM

The overuse of antibiotics in animal husbandry necessitates the development of natural alternatives. Chinese herbal residues, such as stems and leaves of Angelica pubescentis Radix (APR), are often discarded despite containing valuable bioactive compounds.

This study aims to valorize these residues through solid-state fermentation using the probiotic strain Bacillus amyloliquefaciens **SSYB**. We focus on enhancing the content of **osthole**-a key bioactive compound with demonstrated antimicrobial and anti-inflammatory properties-to develop a high-value feed additive and promote sustainable resource utilization.

METHOD

- 1. Strain and Substrate APR stems and leaves were fermented with B. amyloliquefaciens SSYB, a cellulase-producing strain isolated from corn silage.
- 2.Experimental Design The fermentation process was systematically optimized through single-factor tests followed by an $L_9(3)^4$ orthogonal array, evaluating four critical parameters: fermentation time, temperature, inoculation amount, and water content.
- 3. Analytical Method Osthole content was quantitatively analyzed using high-performance liquid chromatography (HPLC) with a C18 column and UV detection at 330 nm.

RESULTS & DISCUSSION

Table 1. Effects of Fermentation Parameters on Osthole Content

Factor	Optimal Level	Osthole Content (mg/g)	Key Trend				
Time	72 h	1.63 ± 0.05	Increased to a peak at 72 h, then declined.				
Temperature	37 °C	1.58 ± 0.05	37 °C yielded the highest content.				
Inoculation	5 %	1.62 ± 0.04	5 % was optimal for microbial efficiency				
Water Content	65 %	1.59 ± 0.05	Critical for oxygen transfer and nutrient uptake.				
The single-factor tests systematically identified the ontimal range for							

The single-factor tests systematically identified the optimal range for each parameter. A consistent trend was observed where osthole content initially increased to a distinct peak before declining with further increases in factor levels. The optimal conditions were thus determined as fermentation for 72 hours at 37°C with a 5% inoculation amount and 65% water content, providing the foundation for orthogonal optimization.

Table 3. Validation of Optimized Fermentation Process

Sample	Osthole Content (mg/g)
Unfermented Control	1.24 ± 0.02
Initial Fermentation Process	1.57 ± 0.02
Optimized Fermentation Process	1.81 ± 0.03

Under the optimum conditions, the content of osthole reached 1.81 mg/g. Compared with the unfermented raw material, it was significantly increased by 45.97% (P < 0.01), and the optimization results were successfully verified.

CONCLUSION

The solid-state fermentation process for APR stems and leaves was successfully optimized using *Bacillus amyloliquefaciens* SSYB. The from laboratory to industrial scale for commercial production. optimal parameters of 72 h, 37°C, 5% inoculation, and 65% water content significantly enhanced the osthole content to 1.81 mg/g, efficacy and safety of the fermented product in livestock. representing a 45.97% increase over unfermented materials. This method effectively converts herbal residues into high-value feed underlying the enhanced osthole release during fermentation. additives, providing a sustainable approach for utilizing non-medical plant parts and supporting antibiotic reduction in animal production.

Table 2. Orthogonal Test $L_9(3)^4$ Design and Results

Table 2. Of thogonal Test L9(3) Design and Results								
Trial	Time (h)	Temp (°C)	Inoculation (%)	Water Content (%)	Osthole (mg/g)			
	A	В	С	D				
1	60	35	4	55	1.58			
2	60	37	5	60	1.73			
3	60	39	6	65	1.58			
4	72	35	5	65	1.75			
5	72	37	6	55	1.71			
6	72	39	4	60	1.64			
7	84	35	6	60	1.41			
8	84	37	4	65	1.51			
9	84	39	5	55	1.50			
\mathbf{k}_1	1.630	1.580	1.577	1.597				
k_2	1.700	1.650	1.660	1.593				
k_3	1.473	1.573	1.567	1.613				
R	0.227	0.077	0.093	0.020				

The order of the influence of various factors on the content of osthol in orthogonal experiment is: fermentation time>inoculation amount>fermentation temperature>water content. The optimal combination for fermentation of Angelica sinensis stems and leaves is A₂B₂C₂D₃, which is fermentation time of 72 hours, fermentation temperature of 37 °C, inoculation amount of 5%, and water content of 65%.

FUTURE WORK

Process Scale-up: Transition the optimized fermentation process

In Vivo Validation: Conduct animal feeding trials to evaluate the

Mechanism Investigation: Elucidate the molecular mechanisms

Synergistic Effects: Explore potential synergistic relationships between osthole and other bioactive compounds in fermented material.