The 29th Intl Electronic Conference on Synthetic Organic Chemistry

14-28 November 2025 | Online

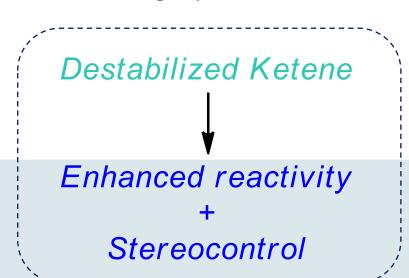
Exploiting the Reactivity of Destabilized Pyrrolylketene for the Stereoselective Synthesis of β -Lactams

Elaheh Babaei*

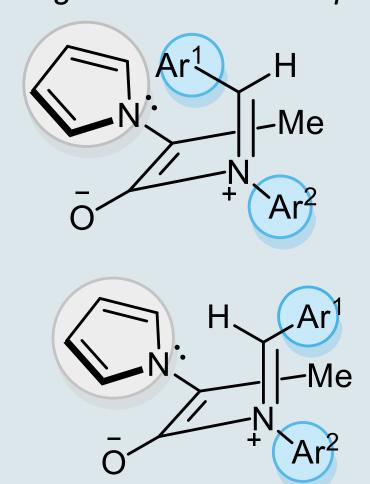
*School of Science, Engineering and Environment, University of Salford, United Kingdom

Introduction

 β -Lactams are widely recognized for their role in medicinal chemistry, particularly as the backbone of many antibiotics [1]. One of the most efficient ways to synthesize these strained four-membered rings is via the [2+2] cycloaddition of ketenes with imines. In many cases, however, aryl ketenes are stabilized by π -conjugation, which reduces their electrophilicity and slows the reaction [2].


In this work, main focus is on an electronically destabilized N-pyrrolylketene. The nitrogen ione pair of pyrrole is twisted out of conjugation with the ketenyl π -system, eliminating resonance stabilization. This subtle structural change significantly increases reactivity and allows the cycloaddition to proceed under mild conditions.

Method


- o N-Pyrrolylpropanoic acid, prepared from L-alanine and dimethoxytetrahydrofuran, was converted in situ to the corresponding ketene using Mukaiyama reagent and triethylamine under mild conditions, as reported by Babaei et al. [3]. Because of its intrinsic instability, the ketene was not isolated but reacted directly with aromatic imines to afford β -lactams.
- o In this study, reported data on yields, substituent effects, and stereochemical outcomes were analyzed. Frontier molecular orbital (FMO) considerations were applied to rationalize the role of π -conjugation disruption in enhancing ketene reactivity and in directing the observed preference for trans products.

Aims

- o Develop a stereoselective and mild β -lactam synthesis using N-pyrrolylketene as a highly reactive, electronically destabilized intermediate, while clarifying whether the reaction follows a concerted pericyclic pathway or a stepwise polar sequence involving a zwitterionic intermediate.
- Assess the influence of imine electronic properties on both reactivity and stereochemical outcome, establishing ketene destabilization as a general design principle for strained-ring synthesis.

A : Significant steric repulsion

B: Favorable steric orientation

H_3C H_3C

Ion pair twisted

out of conjugation

Results

The reaction consistently favored trans- β -lactams, with some substrates producing exclusively trans products. For example, the combination of N-pyrrolylketene with N-benzylideneaniline (Ph_Ph) afforded only the trans isomer. Imines bearing strong electron-withdrawing groups (e.g., 4-Cl, 4-Br) reacted faster and delivered purely trans products, whereas those with electron-donating groups (4-MeO, 4-Me) reacted more slowly and gave small amounts of the cis isomer.

EWGs (e.g., 4-Cl, 4-Br):

Faster reaction, exclusive trans products.

EDGs (e.g., 4-MeO, 4-Me):

- o slower reaction, small cis fraction observed.
- The stereochemistry appears to be determined during the initial *N*-attack step.

Discussion: Mechanistic & Pericyclic Analysis

From a pericyclic perspective, this is a $[\pi 2s + \pi 2a]$ thermal cycloaddition, but in reality, the strong polarization of N-pyrrolylketene shifts the reaction toward a polar, asynchronous pathway.

Stepwise mechanism proposal:

- ✓ Nucleophilic attack: HOMO of imine nitrogen → LUMO of ketene carbonyl carbon, forming zwitterion.
- ✓ Conformational relaxation: $A \rightarrow B$ to minimize steric clash between Ar¹ and Ar².
- ✓ Ring closure: Intramolecular C–C bond formation yields β-lactam.

Conclusion

We have demonstrated a mild, stereoselective route to β -lactams via the cycloaddition of a destabilized *N*-pyrrolylketene with aromatic imines. Mechanistic and Frontiers Molecular Orbitals analysis supports a polar, asynchronous [2+2] cycloaddition pathway. By breaking π -conjugation in the ketene, we enhance its reactivity and control stereochemistry, a strategy that holds promise for broader applications in synthetic organic chemistry.

Future work

- Investigate solvent effects on the stability of zwitterionic intermediates.
- Extend the methodology to include aliphatic imines and heteroaryl ketenes.
- Apply the strategy toward the synthesis of βlactam analogs with potential medicinal relevance.

https://sciforum.net/event/ecsoc-29

References

[1] Lima, L. M., da Silva, B. N. M., Barbosa, G., & Barreiro, E. J. (2020). β-lactam antibiotics: An overview from a medicinal chemistry perspective. European journal of medicinal chemistry, 208, 112829.

[2] Fu, N., & Tidwell, T. T. (2008). Preparation of β -lactams by [2+ 2] cycloaddition of ketenes and imines. Tetrahedron, 64(46), 10465-10496.

[3] Babaei, E., Islami, M. R., & Kalantari, M. (2013). Stereoselective Synthesis of New β-Lactams from 2-(1H-Pyrrol-1-yl)-1-propen-1-one as a Novel Ketene. Synlett, 24(15), 1937-1940.