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Abstract 

In this work we report the stereoselective synthesis of 2H-flavenes via an aminocatalytic 

privileged Diversity-Oriented Synthesis (ApDOS) strategy. An oxa-Michael cyclization 

between salicylaldehydes and an iminium intermediate from cinnamaldehyde and the 

Hayashi–Jørgensen catalyst afforded flavenes in up to 81% yield and 90% ee under opti-

mal conditions (PhCOOH, toluene, 40 °C, 18 h). In general, the reaction proceeds with 

good yields. Further, reaction with a stabilized carbanion produced Knoevenagel-type 

adducts, explained by electronic delocalization, HSAB considerations, and kinetic/ther-

modynamic factors. The resulting polycyclic products show potential as dienophiles in 

Diels–Alder reactions, offering valuable scaffolds for future bioactive compound devel-

opment. 
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1. Introduction 

The stereocontrolled synthesis of privileged structures based on natural architec-

tures, constitute an important topic in the contemporary organic chemistry, The ability of 

such compound to exert significant biological activity have allowed the development of a 

wide variety of synthetic methodologies [1]. Traditionally, the synthesis of bioactive com-

pounds has been through concept of Target-Oriented Synthesis (TOS), which emphasizes 

assembling a compound by a retrosynthetic analysis. In contrast, Diversity-Oriented Syn-

thesis (DOS) allows the creation of structurally diverse libraries from common substrates 

[2]. 

For years, the aminocatalysis has remained as an important tool in the field of or-

ganocatalysis, its relevance lies in the ability to develop a broad range of methodologies 

through the different catalytic pathways. In this sense, Aminocatalytic privileged Diver-

sity-Oriented Synthesis (ApDOS), has emerged as a versatile strategy, which expands 

structural diversity through various activation modes under stereochemical control [3]. 

In terms of privileged frameworks, flavonoids are a large family of secondary me-

tabolites characterized by a C6–C3–C6 structural motif with various pharmacological ef-

fects, including antioxidant, antiviral, and anti-inflammatory activities. Particularly, the 

2H-flavenes are notable for their structural properties and biological potential, which 
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range from the cytotoxic natural product candenatenin E to synthetic derivatives such as 

acolbifene, a selective estrogen receptor modulator [4]. 

 

Figure 1. ApDOS concept. 

 

Figure 2. Classification and structural variants of flavonoid. 

Considering the important properties of the 2H-flavenes, several methodologies have 

been stablished for their synthesis, including the asymmetric synthesis via aminocatalysis. 

In 2006, Arvidsson reported the first oxa-Michael route using the Hayashi–Jørgensen cat-

alyst. Later, in 2007, Córdova and Wang improved the selectivity and yields by both, the 

optimization of the conditions and the use of a different organocatalyst [5–7]. 

2. Methodology 

All starting materials and reagents employed in this study were commercially 

sourced unless otherwise specified. Proton 1H NMR spectra were obtained using a Bruker 

400 MHz spectrometer. Flash column chromatography was performed on silica gel using 

mixtures of hexane/ethyl ether, as well as hexane/ethyl acetate, as eluents. 

3. Results and Discussions 

Initially, the conditions reported by Córdova and co-workers for the flavene synthe-

sis were reproduced. However, an optimization was necessary because the initial results 

were not fully satisfactory. 
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Table 1. Optimization of the aminocatalytic oxa-Michael reaction for the synthesis of 2H-flavenes. 

 

Entry Solvent T (°C) Additive Equiv. 1a Equiv. 2a t (h) Yield (%) % ee 

1 Toluene 25 PhCO2H 1.2 1.0 72 68 In progress 

2 Toluene 25 p-NO2-PhCO2H 1.2 1.0 72 60 In progress 

3 Toluene 40 p-NO2-PhCO2H 1.2 1.0 16 76 In progress 

4 Toluene 40 PhCO2H 1.2 1.0 16 81 90 

5 Toluene 40 PhCO2H 1.0 1.2 16 51 60 

6 Dioxane 40 PhCO2H 1.2 1.0 18 56 In progress 

7 Dioxane 70 PhCO2H 1.2 1.0 16 46 In progress 

8 Chloroform 40 PhCO2H 1.2 1.0 48 44 In progress 

9 Acetonitrile 40 PhCO2H 1.2 1.0 48 56 In progress 

Once the reaction conditions were optimized (entry 4), the scope and limitations of 

the reaction were explored by synthesizing derivatives with different substitution pat-

terns on salicylaldehyde and cinnamaldehyde. In this sense, whole the products were ef-

ficiently obtained through the iminium-ion activation mode, confirming the versatility of 

the proposed strategy (Scheme 1). 

 

Scheme 1. Scope and limitations for the synthesis of flavenes. 

With the 2H-flavenes in hand, we explored an organocatalytic post-functionalization 

through the Michael addition of a stabilized carbanion to the iminium ion formed by con-

densation of the aldehyde from the flavene with an aminocatalyst. However, an unex-

pected Knoevenagel reaction resulted when the enolate from 2b was used (Table 2). This 

transformation occurred in high yields and was reproducible under different solvents and 

temperatures. 



Chem. Proc. 2025, x, x FOR PEER REVIEW 4 of 5 
 

 

Table 2. Knoevenagel functionalization of 2H-flavenes with a stabilized carbanion under different 

conditions. 

 

Entry Solvent Temp (°C) Equiv. 3a Equiv. 2b Time (h) Yield (%) 

1 Chloroform 25 1.0 2.0 24 95 

2 Toluene 25 1.0 2.0 24 93 

3 Toluene 40 1.0 2.0 24 86 

This behavior can be explained by considering the electronic delocalization of the 2H-

flavene system, as well as Pearson’s Hard–Soft Acid–Base (HSAB) principles and both 

kinetic and thermodynamic factors, which favor the condensation over addition. The for-

mation of the Knoevenagel-type product was confirmed by 1H NMR, high-resolution 

mass spectrometry (HRMS), and X-ray diffraction. 

 

Figure 3. Representative 1H-NMR signals of the Knoevenagel product. 

4. Conclusions 

An efficient stereoselective methodology for the synthesis of 2H-flavenes was devel-

oped through organocatalysis using an iminium-ion activation (up to 81% yield, 90% ee). 

The strategy is versatile for different salicylaldehydes and cinnamaldehydes. Addition-

ally, a post-fuctionalization with a stabilized carbanion afforded to Knoevenagel-type 

products rather than Michael adducts, which can be rationalized by electronic delocaliza-

tion of the flavene system and according to the HSAB theory. Overall, this work demon-

strates that the ApDOS strategy provides not only enantioselective access to bio-inspired 

flavenes but also new structural diversifications, opening opportunities for the synthesis 

of bioactive molecules and future new transformations. 
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