The 29th Intl Electronic Conference on Synthetic Organic Chemistry

14-28 November 2025 | Online

Kinetic Study of the Reaction between 7-Methoxy-1-Tetralone and Glyoxylic Acid via Basic Catalysis

Asley K. Robles¹, Elvia V. Cabrera¹, Michelle E. Herrera^{1,2}, Jhonny Correa-Abril¹ and Ullrich Stahl¹ ¹Universidad Central del Ecuador, Facultad de Ingeniería Química, Grupo de Investigación de alimentos, compuestos Orgánico, Materiales, Microbiología Aplicada y Energía (ACMME), Ciudadela Universitaria, Quito, Ecuador ²Instituto de Investigación Geológico y Energético (IIGE), Av. de la República E7-263, Quito, Ecuador

INTRODUCTION & AIM

1-Tetralones are compounds widely used as raw materials in organic synthesis due to their molecular versatility for the design of molecules with applications in various industrial fields. In particular, 7-Methoxy-1-tetralone stands out for its pharmacological activity and as an intermediate in the synthesis of compounds such as dyes, pesticides, among others¹⁻³. Based on this evidence, the present study aimed to investigate the kinetics of the Knoevenagel condensation reaction between 7-Methoxy-1-tetralone (1), glyoxylic acid (2), and potassium tertbutoxide as a catalyst. The reaction was carried out at three temperatures (65, 75, and 85 °C), monitoring the progress over time using TLC and HPLC for the production of (E)-2-(7-Methoxy-1-oxo-3,4-dihydronaphthalen-2(1*H*)-ylidene)acetic acid (3). The experimental results allowed for the identification of the kinetic parameters of the reaction and the mathematical models that best fit and maximized the yield. Fig. 1 shows the general reaction.

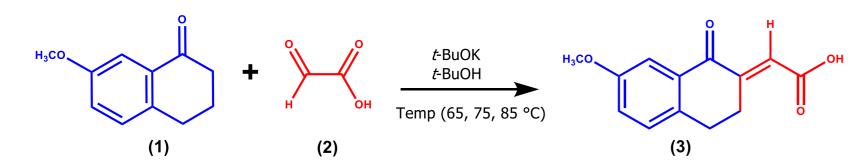
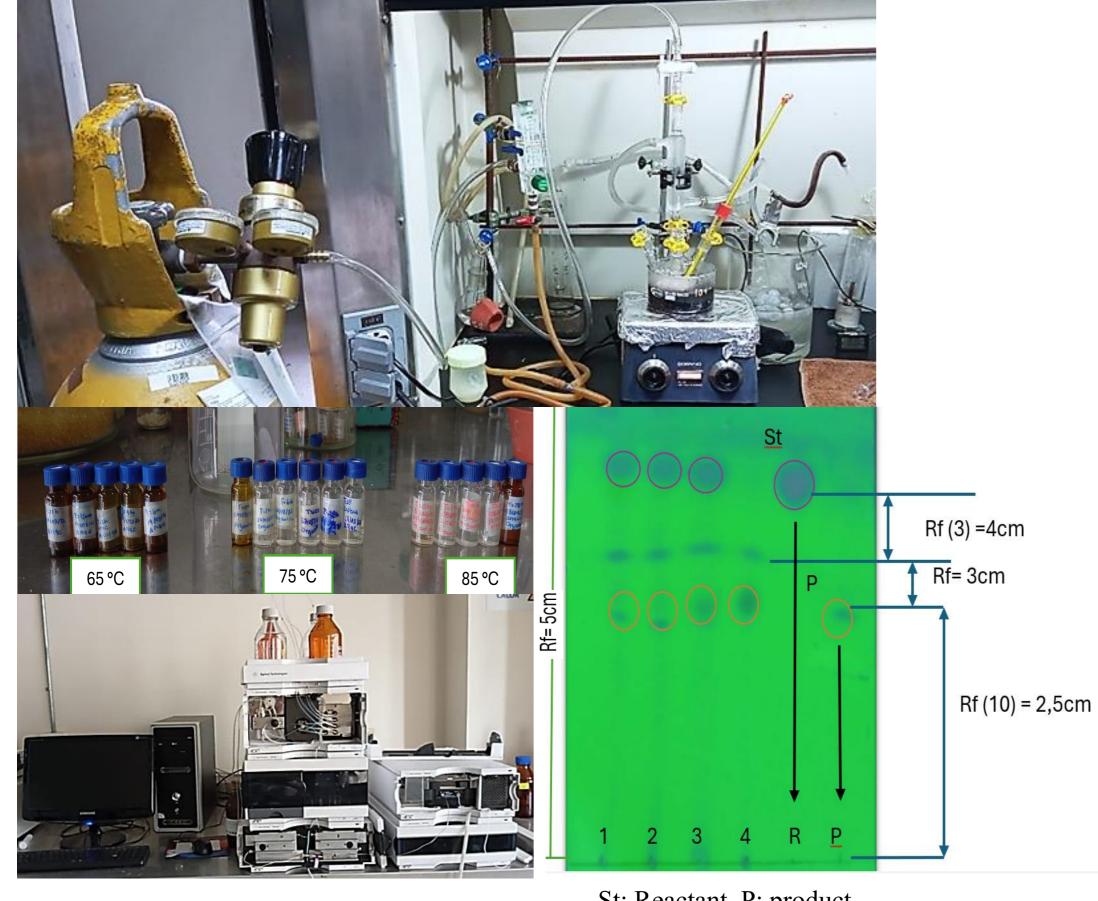



Figure 1. Knoevenagel condensation reaction to obtain (3).

METHOD

The reaction was carried out in a batch system under a nitrogen atmosphere. In a three-neck flask equipped with a thermometer, connectors, and a condenser, the reactants (1), (2) were placed, using tert-butanol as the solvent and tert-BuOK as catalyst. The mixture was heated in an oil bath at the study temperatures (65, 75 and 85 °C) with constant stirring at 600 rpm. The conversion monitored using thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) at defined time intervals. The product was purified by recrystallization in ethanol and characterized using FTIR, UV-Vis, and GC-MS. The kinetic data were analyzed using mathematical methods: integral, differential, and nonlinear regression.

St: Reactant, P: product

RESULTS & DISCUSSION

The unsaturated acid (3) was obtained under experimental conditions at a temperature of 75 °C over a period of 28 hours, with a total yield of 81.40 %. In contrast, at temperatures of 65 °C and 85 °C, the yields were 17.01 % and 72.59 %, respectively, and total conversion was not achieved. The kinetic study showed that the model that best fitted was the pseudo-second order model, determined through nonlinear regression, with a rate constant of 1.77 mL mmol⁻¹ min⁻¹. The calculated activation energy was 67.22 kJ mol⁻¹, and the pre-exponential factor was 2.19×10¹⁰ mL mmol⁻¹ min⁻¹, indicating that the reaction is favorable. Spectroscopic characterization confirmed the identity of the unsaturated acid (3) with good purity.

Table 1. Results of the kinetic parameters

Parameters	1	2	3
Temperature [°C]	65	75	85
Time [h]	28	28	6
Yield [%]	17.01	81.40	72.59
Reaction Order [α]	2.01	2.05	2.00
$k\left[\left(\frac{mL}{mmol*min}\right)^{\alpha-1}\right]$	0.89	1.77	3.42
Ea $\left[\frac{kJ}{mol}\right]$	67.22		
$A\left[\left(\frac{mL}{mmol*min}\right)^{\alpha-1}\right]$	$2.19x10^{10}$		

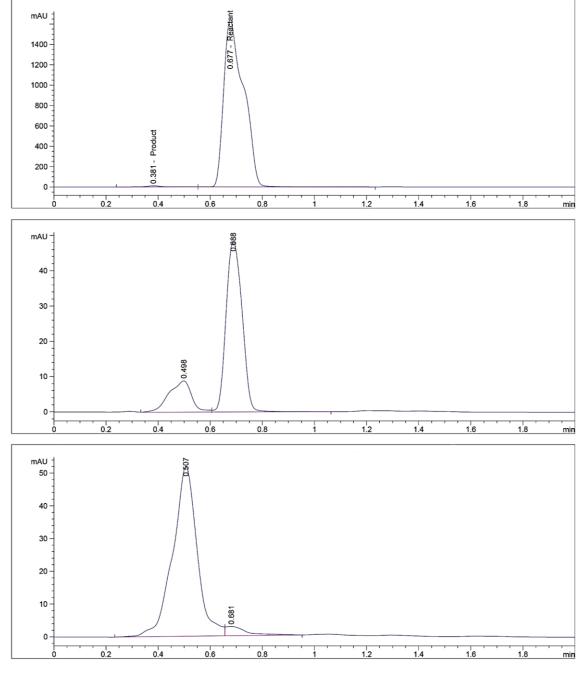


Figure 2. Monitoring of the condensation reaction by HPLC to obtain (3) at the conditions of $[T=75 \, ^{\circ}C \, (t=0, 6 \text{ and } 28 \text{ h})].$

CONCLUSION

The synthesis of (E)-2-(7-methoxy-1-oxo-3,4-dihydronaphthalen-2(1H)-ylidene)acetic acid (3)was achieved through the Knoevenagel condensation of 7-methoxy-1-tetralone with glyoxylic acid using t-BuOK at a temperature of 75 °C, yielding 81.40 %. The kinetic analysis allowed us to conclude that the reaction follows a pseudo-second order model. The results obtained provide valuable information about the kinetics of this reaction and establish a foundation for future studies in the synthesis and evaluation of derivatives with potential biological activity.

FUTURE WORK / REFERENCES

Investigate the activity and utility of the unsaturated acid (3).

References

- Smith, M. B. (2020). March's advanced organic chemistry: reactions, mechanisms, and structure. John Wiley & Sons. . Wen, Y., Cai, X., Chen, S., Fu, W., Chai, D., Zhang, H., & Zhang, Y. (2020). 7-Methoxy-1-tetralone induces apoptosis,
- suppresses cell proliferation and migration in hepatocellular carcinoma via regulating c-Met, p-AKT, NF-κB, MMP2, and MMP9 expression. Frontiers in Oncology, 10, 58.
- Li, R., Liu, Z., Chen, L., Pan, J., & Zhou, W. (2018). Enantioselective phase-transfer catalyzed alkylation of 1-methyl-7methoxy-2-tetralone: an effective route to dezocine. Beilstein Journal of Organic Chemistry(14(1), 1421-1427.).