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Abstract

The compound 6-(1,3-dimethylureido)dibenzo[c,e][1,2]Joxaphosphinine 6-oxide was syn-
thesized in a single step, under mild reaction conditions, from the commercially available
H-phosphinate 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and 1,3-
dimethylurea in the presence of a mild oxidant and triethylamine. The reaction led to the
formation of a P-N bond between the phosphoryl group and one of the urea nitrogen
atoms. The compound was spectroscopically characterized, and thermal properties inves-
tigated.
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1. Introduction

H-Phosphinate 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) is an
organophosphorus derivative widely investigated in the field of non-halogenated flame
retardants for plastics [1,2]. Among the possible derivatizations of DOPO, the formal re-
placement of the P-bonded hydrogen atom with nitrogen substituents leads to the for-
mation of phosphonamidates, that exhibit peculiar flame retardant properties thanks to
the P-N synergism [3]. For instance, in the condensed phase phosphorus derivatives pro-
mote the formation of a carbonaceous char layer, and nitrogen-containing compounds
may promote the stability and intumescence of the layer. A common approach to obtain
DOPO-based phosphonamidates is based on the synthesis of 9,10-dihydro-9-oxa-10-phos-
phaphenanthrene-10-chloride (DOPO-CI), followed by the displacement of the chlorine
atom with a suitable amine. DOPO-CI can be formed through the Atherton-Todd reaction
between DOPO and carbon tetrachloride, but alternative chlorinating agents such as sul-
furyl dichloride, trichlorocyanuric acid, chlorine gas and N-chlorosuccinimide can be em-
ployed [4-12].

Based on the knowledge developed by our group on the chemistry of DOPO and
related organophosphorus species [13-16] and patented alternative approach for the
preparation of DOPO derivatives with P-N bonds, prepared under mild conditions with-
out chlorinated reactants [17,18], in this paper we report the synthesis and characteriza-
tion of 6-(1,3-dimethylureido)dibenzo[c,e][1,2]Joxaphosphinine 6-oxide (DOPO-Nvurea),
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obtained from DOPO and 1,3-dimethylurea. The thermal behaviour of the new compound
was also investigated.

2. Experimental Section
2.1. Materials

9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) was purchased
from Fluorochem (Glossop, UK) and used without further purification. 1,3-Dimethylurea
(DMU), other organic reactants and iodine were Merck (Darmstadt, Germany) products
used as received.

2.2. Characterizations

Carbon, hydrogen and nitrogen elemental analyses were performed using an Ele-
mentar (Langenselbold, Germany) Unicube microanalyzer. ATR-IR spectra were rec-
orded with a Perkin-Elmer (Shelton, CT, USA) Spectrum Two spectrophotometer
equipped with diamond ATR. Mono- and bidimensional NMR spectra were collected
with a Bruker Avance 400 instrument (Billerica, MA, USA) operating at 400.13 MHz of 'H
resonance. 'H and 1*C NMR spectra were referenced to tetramethylsilane, while 3P NMR
chemical shifts were referred to external 85% HsPOs in water. Absorption spectra were
recorded with a Yoke (Fengxian, China) 6000Plus double-beam spectrophotometer.
Steady-state and time-resolved luminescence measurements were carried out with an
Edimburgh Instruments (Livingston, UK) FS5 spectrofluorometer. Melting points were
registered using a FALC (Treviglio, Italy) 360 D instrument equipped with a camera. Ther-
mogravimetric analyses were performed under N2 flow with a Perkin-Elmer TGA4000
instrument. Differential scanning calorimetry measurements were carried out under N:
with a Mettler Toledo DSC 3.

2.3. Synthesis of DOPO-Nvre

The reaction was carried out in a MBraun (Garching bei Miinchen, Germany) MB10
glovebox filled with N2. In a typical preparation, DOPO (0.500 g, 2.3 mmol) was dispersed
in 25 mL of anhydrous dichloromethane. Triethylamine (650 uL, 4.7 mmol) was added to
the reaction mixture at room temperature. After stirring at room temperature until the
complete dissolution of DOPO (about 10 min), DMU (0.203 g, 2.3 mmol) was added. Solid
iodine (0.584 g, 2.3 mmol) was introduced into small aliquots, and the solution was left
under stirring overnight at room temperature. The solvent was evaporated at reduced
pressure and the product was dissolved with two aliquots of toluene (15 mL each). The
by-product triethylammonium iodide was separated by centrifugation and toluene was
removed by evaporation at reduced pressure. The addition of diethyl ether (10 mL) caused
the formation of a white powder, which was collected by filtration, washed two times
with 5 mL of diethyl ether and dried under vacuum. Yield: 83% (0.577 g).

Characterization of DOPO-Nure2: Anal. caled for CisHisN20sP (302.26 g mol,%): C,
59.60; H, 5.00; N, 9.27. Found (%): C, 59.36; H, 5.05; N, 9.23. ATR-IR (cm™): 3315 vng, 1687
veo, 1288 ve =0 + onu. 'H NMR (CDCls, 300 K)  8.07-7.96 (m, 2H, arom-CH+NH), 7.93 (d,
1H, Jau = 7.9 Hz, arom-CH), 7.74 (dd, 1H, Jeu = 15.9 Hz, Jun = 7.6 Hz, arom-CH), 7.67 (d,
1H, Juu = 7.6 Hz, arom-CH), 7.47 (td, 1H, Jun =7.6 Hz, Jru = 3.2 Hz, arom-CH), 7.34 (t, 1H,
Jun=7.7 Hz, arom-CH), 7.22 (t, 1H, Jun=7.7 Hz, arom-CH), 7.18 (d, 1H, Juu =8.3 Hz, arom-
CH), 2.85 (d, 3H, Jux = 4.5 Hz, N(H)-CHzs), 2.62 (d, 3H, Jeu = 9.2 Hz, N(P)-CHs). 3'P{'H}
NMR (CDCls, 300 K) o 14.5 (s). *C{*H} NMR (CDCls, 300 K) 6 156.2 (d, Jec = 7.4 Hz, CO),
149.7 (d, Jec = 7.5 Hz, arom-Cipso), 136.9 (d, Jrc = 7.3 Hz, arom-Cipso), 133.8 (d, Jec =2.2 Hz,
arom-CH), 130.8 (s, arom-CH), 129.8 (d, Jrc = 9.6 Hz, arom-CH), 128.8 (d, Jrc = 15.4 Hz,
arom-CH), 124.9 (s, arom-CH), 124.9 (s, arom-CH), 123.7 (d, Jec=12.0 Hz, arom-CH), 121.6
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(d, Jec =174.5 Hz, arom-Cipso), 120.8 (d, Jrc =3.1 Hz, arom-Cipso), 120.3 (d, Jec=7.2 Hz, arom-
CH), 31.0 (d, Jrc=4.6 Hz, N(P)-CH3), 27.5 (s, N(H)-CHs). UV-VIS (CH2Clz, 298 K, nm): <320,
302 sh, 291, 269, 260. PL (solid, Aexcitation = 255 nm, nm): 383 (FWHM = 5800 cm™). T (Aexcitation
=280 nm, Aemission = 385 nm, ns): 3.7.

2.4. Computational Simulations

Computational simulations were carried out with the r2.SCAN-3c method [19], based
on the meta-GGA r2SCAN functional combined with a tailor-made triple-C Gaussian
atomic orbital basis set and D4 and geometrical counter-poise corrections for London dis-
persion and basis set superposition error. The C-PCM implicit solvation model was
added, considering dichloromethane as a continuous medium [20]. IR simulations were
carried out using the harmonic approximation. The software used was ORCA version
5.0.3 [21].

3. Results and Discussion

DOPO-Nue was synthesized with high yield and purity by reacting under mild con-
ditions a solution containing DOPO, DMU and two equivalents of triethylamine with stoi-
chiometric iodine, according to the reaction in Scheme 1. The salt by-product of the reac-
tion was easily separated from DOPO-Nur thanks to the different solubility in toluene.

1. NEL, (2 eq)

o

o N
Hz0 Q 2.1,(1 eq) 4 )\
N )I\ - $SNT o

5 N N ~ [NHEL]I (2 eq) 5 |
H
CH1C|g, rt
DOPO DMU DOPO-N""

Scheme 1. Reaction between DOPO and DMU in presence of NEts and Io.

Elemental analysis data agree with the proposed formulation. The ATR-IR spectrum
shows a band at 3315 cm™ attributed to the N-H stretching, while the vco vibration falls at
1687 cm™. The P=0 stretching was assigned to a band at 1288 cm thanks to the simulation
of the IR spectrum carried out on the DFT-optimized geometry of the compound (Figure
1). The computed data revealed that the vr-o vibration is combined with the bending of
the N-H bond, thanks to the presence of an intramolecular hydrogen bond involving the
two fragments (computed H-O and N-H distances equal to 1.914 and 1.014 A, respec-
tively). The computed geometry revealed that the two N-C bonds are markedly different,
since the distance involving the P-substituted nitrogen atom is 1.424 A, 0.078 A longer
than the C(O)-NHMe one (1.346 A). Considering other geometrical parameters, the two
phosphorus-oxygen bond distances are 1.491 and 1.627 A, the shortest one corresponding
the phosphoryl fragment. The phosphorus centre is roughly tetrahedral, the T« parameter
[22] being equal to 0.93.

The formation of DOPO-Nvre was confirmed by NMR analysis. In particular, the
high-frequency region of the 'H NMR spectrum showed eight resonances attributable to
the biphenyl fragment between 8.1 and 7.1 ppm. The NH resonance overlaps around 8.0
ppm. The two non-equivalent methyl groups fall at 2.85 and 2.62 ppm. The first one is a
doublet because of the coupling with the N-bonded hydrogen atom (Jux = 4.5 Hz), while
the second couples with the 3P isotope (Jer = 9.2 Hz), as shown by the 'H{*'P} NMR spec-
trum. No resonance due to hydrogen atoms directly bonded to the phosphorus atom were
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1H{31P} NMR

observed. Only one sharp signal at 14.5 ppm is present in the ¥P{'"H} NMR spectrum (Fig-
ure 2). The BC{'H} NMR spectrum is composed by twelve resonances between 180.0 and
120.0 ppm, four corresponding to Cipso carbon atoms. A doublet at 156.2 ppm with Jec cou-
pling constant equal to 7.4 Hz was assigned to the carbonyl carbon atom. The two methyl
signals fall at 31.0 and 27.5 ppm, and only the first one shows the coupling with the phos-
phorus centre, with Jrc equal to 4.6 Hz (Figure 3). The NMR data unequivocally indicate
the formation of one P-N bond between DOPO and DMU and only one isomer of the final
product is present in CDCls solution.

For what concerns other spectroscopic characterizations, DOPO-Nwe2 absorbs radia-
tion for wavelengths shorter than 320 nm. Excitation with UV light causes a wide emission
centred in the near-ultraviolet range (Amax =383 nm), attributed to fluorescent decay on the
basis of the excited-state lifetime, in the nanoseconds range.
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Figure 1. ATR-IR spectrum (blue line) and unscaled simulated IR spectrum (green line; Lorenzian

broadening, FWHM = 8 cm™) of DOPO-Nvr2. DFT-optimized structure of DOPO-N (P, orange;
O, red; N, blue; C, grey; H, white).
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Figure 2. '"H NMR, '"H{*'P} NMR and *'P{'H} NMR spectra of DOPO-Nvr2, CDCls, 300 K.
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Figure 3. 3C-HSQC NMR spectrum of DOPO-Nu, 'H{3'P} NMR spectrum shown in the direct di-
mension. Inset: high-frequency region of the 3C{'"H} NMR spectrum. CDCls, 300 K.

DOPO-Nvre2 melts without decomposition slightly above 140 °C, a result in line with
a sharp endothermic DSC peak centred at 147 °C. The compound starts losing volatile
compounds at temperatures above 150 °C. The first decomposition process ends around
240 °C with a residual mass of about 81%. According to recent studies on the thermal
decomposition of organic ureas [23], the mass loss is coherent with a proton transfer and
elimination of a methyl isocyanate molecule: (C12HsO2P)-NMeC(O)NHMe — (C12HsO2P)-
NHMe + O=C=NMe. The TGA curve indicates that the intermediate compound is unstable
and further decompositions with mass loss occur at higher temperatures. The flame re-

tardant properties of DOPO-Nwe2 in bio-based polymers are under current investigation.
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Figure 4. DSC (green line) and TGA (blue line) curves of DOPO-Nvurea,
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